The Grails Framework

Authors: The Grails Team

Version: 3.3.8

Table of Contents

1Introduction
1.1 What's new in Grails 3.3?
1.1.1GORM 6.1
1.1.2New Events API

1.1.3New Testing Framework
1.1.4JSON Views 1.2

1.1.5Updated Dependencies
1.1.6 Other Novelties
2 Getting Started
2.11nstallation Requirements

2.2Downloading and Installing
2.3Creating an Application

2.4A Hello World Example
2.5Using Interactive Mode
2.6Getting Set Up in an IDE

2.7 Convention over Configuration

2.8 Running and Debugging an Application
2.9Testing an Application

2.10Deploying an Application

2.11 Supported Java EE Containers

2.12 Creating Artefacts

2.13 Generating an Application
3Upgrading from Grails 3.2.x

4 Configuration
4.1Basic Configuration
4.1.10ptions for the YML format Config

4.1.2Built in options
4.1.3Logaing
4.1.3.1L ogger Names
4.1.3.2 Masking Request Parameters From Stacktrace Logs

4.1.3.3External Configuration File
4.1.4GORM

4.1.5Configuring an HTTP proxy
4.2The Application Class

4.2.1 Executing the Application Class

4.2.2 Customizing the Application Class

4.2.3The Application LifeCycle

4.3 Environments
4.4The DataSource
4.4.1 DataSources and Environments
4.4.2 Automatic Database Migration
4.4.3 Transaction-aware DataSource Proxy
4.4.4 Database Console

4.4.5Multiple Datasources
4.5Versioning

4.6 Dependency Resolution
5The Command Line

5.1Interactive Mode

5.2 Creating Custom Scripts

5.3 Creating Custom Commands
5.4Re-using Grails scripts

5.5Building with Gradle
5.5.1 Defining Dependencies with Gradle
5.5.2Working with Gradle Tasks

5.5.3Grails plugins for Gradle
6Application Profiles
6.1 Creating Profiles
6.2 Profile Inheritance
6.3 Publishing Profiles

6.4 Understanding Profiles
6.5 Creating Profile Commands

6.6 Creating Profile Features
7 Object Relational Mapping (GORM)
7.1Quick Start Guide
7.1.1Basic CRUD

7.2 Further Reading on GORM
8The Web Layer
8.1Controllers
8.1.1 Understanding Controllers and Actions

8.1.2 Controllers and Scopes
8.1.3Models and Views

8.1.4 Redirects and Chaining
8.1.5Data Binding

8.1.6 Responding with JSON
8.1.7More on JSONBuilder

8.1.8 Responding with XML

8.1.9Uploading Files

8.1.10Command Objects

8.1.11 Handling Duplicate Form Submissions
8.1.12 Simple Type Converters

8.1.13 Declarative Controller Exception Handling

8.2Groovy Server Pages
8.3URL Mappings

8.3.1 Mapping to Controllers and Actions
8.3.2Mapping to REST resources
8.3.3Redirects In URL Mappings
8.3.4Embedded Variables

8.3.5Mapping to Views

8.3.6 Mapping to Response Codes
8.3.7 Mapping to HTTP methods
8.3.8 Mapping Wildcards

8.3.9 Automatic Link Re-Writing

8.3.10 Applying Constraints
8.3.11 Named URL Mappings

8.3.12 Customizing URL Formats
8.3.13Namespaced Controllers
8.4CORS

8.5Interceptors
8.5.1 Defining Interceptors
8.5.2Matching Requests with Inteceptors
8.5.30rdering Interceptor Execution

8.6 Content Negotiation
9Traits

9.1Traits Provided by Grails
9.1.1 WebAttributes Trait Example
10REST
10.1Domain classes as REST resources
10.2Mapping to REST resources

10.3Linking to REST resources from GSP pages
10.4Versioning REST resources
10.5Implementing REST controllers
10.5.1 Extending the Restful Controller super class
10.5.2Implementing REST Controllers Step by Step

10.5.3Generating a REST controller using scaffolding
10.6 The REST Profile

10.7The AngularJS Profile
10.8 The Angular Profile
10.9JSON Views

10.9.1 Getting Started
10.9.2Creating JSON Views
10.9.3JSON View Templates
10.9.4 Rendering Domain Classes with JSON Views
10.9.5JSON Views by Convention
10.10 Customizing Response Rendering

10.10.1 Customizing the Default Renderers
10.10.2 Implementing a Custom Renderer

10.10.3Using GSP to Customize Rendering
10.11 Hypermedia as the Engine of Application State
10.11.1HAL Support

10.11.2 Atom Support
10.11.3Vnd.Error Support

10.12 Customizing Binding of Resources
10.13RSS and Atom
11 Asynchronous Programming
12Validation
12.1 Declaring Constraints
12.2Validating Constraints

12.3 Sharing Constraints Between Classes
12.4Validation on the Client

12.5Vadlidation and Internationalization

12.6 Applying Validation to Other Classes

13The Service Layer
13.1 Declarative Transactions

13.1.1 Transactions and Multi-DataSources
13.1.2 Transactions Rollback and the Session
13.2 Scoped Services
13.3Dependency Injection and Services
14 Static Type Checking And Compilation
14.1 The GrailsCompileStatic Annotation
14.2 The GrailsTypeChecked Annotation
15Testing
15.1Unit Testing
15.21ntegration Testing
15.3Functional Testing
16 Internationalization

16.1 Understanding Message Bundles
16.2 Changing L ocales
16.3Reading Messages
16.4 Scaffolding and i18n
17 Security
17.1 Securing Against Attacks
17.2 Cross Site Scripting (XSS) Prevention
17.3Encaoding and Decoding Objects
17.4 Authentication

17.5 Security Plugins
17.5.1 Spring Security

18Plugins
18.1 Creating and Installing Plugins
18.2 Plugin Repositories
18.3Providing Basic Artefacts
18.4 Evaluating Conventions
18.5Hooking into Runtime Configuration
18.6 Adding Methods at Compile Time
18.7 Adding Dynamic Methods at Runtime

18.8 Participating in Auto Reload Events
18.9Understanding Plugin L oad Order

18.10The Artefact API
18.10.1 Asking About Available Artefacts
18.10.2 Adding Y our Own Artefact Types
19Grails and Spring
19.1 Configuring Additional Beans
19.2 Runtime Spring with the Beans DSL
19.3The BeanBuilder DSL Explained
19.4 Property Placeholder Configuration
19.5Property Override Configuration
19.6 Spring Boot Actuators

20 Scaffolding
21 Deployment

21.1 Standalone
21.2 Container Deployment (e.g. Tomcat)
21.3Deployment Configuration Tasks

22 Contributing to Grails

22.1 Report Issuesin Github's issue tracker
22.2Build From Source and Run Tests

22.3 Submit Patches to Grails Core
22.4 Submit Patches to Grails Documentation

1 Introduction

Many modern web frameworks in the Java space are more complicated than needed and
don’t embrace the Don’'t Repeat Y ourself (DRY) principles.

Dynamic frameworks like Rails and Django helped pave the way to a more modern way of
thinking about web applications. Grails builds on these concepts and dramatically reduces
the complexity of building web applications on the Java platform. What makes it different,
however, isthat it does so by building on already established Java technologies like Spring
and Hibernate.

Grailsisafull stack framework and attempts to solve as many pieces of the web
development puzzle through the core technology and its associated plugins. Included out the
box are things like:

® GORM - An easy to use Object Mapping library with support for SQL, MongoDB, Neo4j
and more.

® View technologies for rendering HTML aswell as JSON
® A controller layer built on Spring Boot

® A plugin system featuring hundreds of plugins.

® Flexible profilesto create applications with AngularJS, React and more.

® Aninteractive command line environment and build system based on Gradle

http://gorm.grails.org
http://gorm.grails.org/latest/hibernate
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org
https://gsp.grails.org
http://views.grails.org
http://www.spring.io
http://plugins.grails.org
http://start.grails.org/#/index
http://gradle.org

* An embedded Tomcat container which is configured for on the fly reloading

All of these are made easy to use through the power of the Groovy language and the
extensive use of Domain Specific Languages (DSLs)

This documentation will take you through getting started with Grails and building web
applications with the Grails framework.

In addition to this documentation there are comprehensive guides that walk you through
various aspects of the technology.

Finally, Grailsisfar more than just a web framework and is made up of various
sub-projects. The following table summarizes some other key projects in the eco-system
with links to documentation.

Table 1. Grails Ecosystem Projects
Project Description

An Object Mapping implementation for SQL

GORM for Hibernate databases

An Object Mapping implementation for the

GORM for MongoDB MongoDB Document Database

An Object Mapping implementation for

GORM for Neo4j Neodj Graph Database

A View technology for rendering JSON on

JSON Views the server side

A View technology for rendering HTML and

Groovy Server Pages other markup on the server

Asynchronous programming abstraction with

Async Framework support for RxJava, GPars and more

1.1 What'snew in Grails 3.3?

This section covers all the new features introduced in Grails 3.3.

1.1.1 GORM 6.1

Grails 3.3 comes with GORM 6.1, which includes the following new features:

http://tomcat.apache.org
http://groovy-lang.org
http://guides.grails.org
http://gorm.grails.org/latest/hibernate
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org/latest/neo4j
http://views.grails.org
http://gsp.grails.org
http://async.grails.org

® Multi-Tenancy AST Transforms

® Rewritten @ransactional @nd @ol 1 back transformations

® Common Services like Tenant servi ce @nd Transact i onsSer vi ce

® Data Services Concept - Implement interfaces automatically!
® Bean Validation APl Support

* JPA Annotation Support

® Package Scanning and Easy Unit Testing

* Neo4j Bolt 1.2 Driver Support

®* MongoDB 3.4 Driver Support

There are so many new features and noveltiesin GORM that we had to write its own
independent What's New Guide!

1.1.2 New Events API

The Grails Async Framework has been extracted from Grails and moved to a separate
project.

This allows the Async support to evolve independent of the framework itself in afast
moving and evolving area.

In order to support multiple different asynchronous and reactive frameworks Grails 3.3 has
been decoupled from Reactor 2.x and an abstract event Bus Notation added.

The EventBus interface provides the foundation and multiple implementations including
GPars and RxJava.

A new set of annotations usable in services classes and regular Spring beans can be
leveraged to publish and consume events:

® Publisher - A transformation that transforms a method ensuring the return value is published
as an event

® Subscriber - A transformation that transforms a method to listen for an event.

For more information see the new documentation.

1.1.3 New Testing Framewor k

Grails 3.3 includes a new Trait-based testing framework that replaces the existing arest M xi n
based framework with a simpler implementation that is easier to debug, provides better code
completion and is easier to extend.

An example hello world test can be seen below:

http://gorm.grails.org/6.1.x/whatsNew/manual/index.html
http://async.grails.org/latest
http://async.grails.org/latest/api/grails/events/bus/EventBus.html
http://async.grails.org/latest/api/grails/events/annotation/Publisher.html
http://async.grails.org/latest/api/grails/events/annotation/Subscriber.html
http://async.grails.org/latest/guide/index.html#events
https://testing.grails.org

i mport spock. | ang. Speci fication
inport grails.testing.web.controllers.ControllerUnitTest

class HelloControllerTests extends Specification inplenents ControllerUnitTest<HelloController> {
void "Test nessage action"() {
when: " The nessage action is invoked"
control |l er. message()

then:"Hello is returned"
response. text == 'Hell o'

}

1.1.4JSON Views 1.2

Version 1.2 of the JSON Views plugin isincluded with Grails 3.3's "rest-api" profile and
includes a number of new features. Below are some of the highlights:

® Support for the ISON API specification
® Ability to register custom converters

® Multiple configuration options for date formatting, unicode escaping, etc

1.1.5 Updated Dependencies

Grails 3.3 ships with the following dependency upgrades:
® Hibernate 5.1.5 (now the default version of Hibernate for new applications)
® Spring Framework 4.3.9

® Spring Boot 1.5.4

Gradle 3.5 (Grails 3.3 is also compatible with Gradle 4.x)

Spock 1.1

1.1.6 Other Novelties

Cache Plugin Rewritten

The Cache Plugin has been rewritten and no longer use proxies which improves startup time
and performance. The plugin is also now Multi-Tenant aware, ensuring that cached datais
not seen by other tenants.

Convertersplugin now Separate

With JSON Views now being the recommended way to render JSON. The converters plugin
has been split out from core into a separate project.

L ogger name changes

Grails Iogger names for artifacts have been smpllfled from grails. app. <t ype>. <cl assName> O
use the the package name.

http://views.grails.org/1.2.x
http://views.grails.org/1.2.x/#_version_history
http://jsonapi.org
http://plugins.grails.org/plugin/grails/cache
http://gorm.grails.org/latest/hibernate/manual/index.html#multiTenancy
http://views.grails.org
https://github.com/grails-plugins/grails-plugin-converters

For eX&n"Ip'egrai |'s. app. control | er.com exanpl e. BookControl | er iS now Slmply

com exanpl e. BookControl |l er.

For more information see the documentation.

2 Getting Started

2.1 Installation Requirements

Before installing Grails 3.3.2 you will need as a minimum a Java Development Kit (JDK)
installed version 1.7 or above.

If you want to use JDK 1.7, you need to run Gradle with Java 1.7.0_131-b31 or above to fix
Gradle dependency resolution when TLS v1.1 and v1.0 support is discontinued.

Download the appropriate JDK for your operating system, run the installer, and then set up
an environment variable called sava_rove pointing to the location of thisinstallation.

To automate the installation of Grails we recommend SDKMAN which greatly ssmplifies
installing and managing multiple Grails versions.

On some platforms (for example OS X) the Javainstallation is automatically detected.
However in many cases you will want to manually configure the location of Java. For
example, if you're using bash or another variant of the Bourne Shell:

export JAVA HOME=/ Li brary/ Java/ Home
export PATH="$PATH: $JAVA HOVE/ bi n"

On Windows you would have to configure these environment variablesin vy

Conput er/ Advanced/ Envi ronment Vari abl es

2.2 Downloading and Installing

The first step to getting up and running with Grailsisto install the distribution.

The best way to install Grails on *nix systemsiswith SDKMAN which greatly simplifies
installing and managing multiple Grails versions.

Install with SDKMAN

Toinstall the latest version of Grails using SDKMAN, run this on your terminal:

sdk install grails

Y ou can also specify aversion

sdk install grails 3.2.3

Y ou can find more information about SDKMAN usage on the SDKMAN Docs

http://docs.grails.org/3.3.x/guide/conf.html#loggerName
https://blog.gradle.org/unable-to-download-maven-central-bintray
https://blog.gradle.org/unable-to-download-maven-central-bintray
http://sdkman.io
http://sdkman.io
http://sdkman.io/usage.html

Manual installation

For manual installation follow these steps:

* Download abinary distribution of Grails and extract the resulting zip file to alocation of
your choice

® Set the GRAILS HOME environment variable to the location where you extracted the zip

® On Unix/Linux based systems thisistypically a matter of adding something like the
followi NQ export GRAI LS_HOVE=/ path/to/ grails to your profile

®* On Windowsthisistypically amatter of setting an environment variable under »y

Conput er / Advanced/ Envi ronment Vari abl es
® Then add the vi n directory to your ratH variable:

® On Unix/Linux based systems this can be done by adding export PATH=" $PATH: $GRAI LS_HOVE/ bi n*
to your profile

® On Windows thisis done by modifying the rat h environment variable under v

Conput er / Advanced/ Envi ronment Vari abl es

If Grailsisworking correctly you should now be able to type graiis -version in the terminal
window and see output similar to this:

Gails version: 3.3.8

2.3 Creating an Application

To create a Grails application you first need to familiarize yourself with the usage of the
grai s command which is used in the following manner:

grails <<command nane>>

Run create-app to create an application:

grails create-app helloworld

Thiswill create anew directory inside the current one that contains the project. Navigate to
this directory in your console:

cd hel l oworld

2.4 A HelloWorld Example

Let’s now take the new project and turn it into the classic "Hello world!" example. First,
change into the "helloworld" directory you just created and start the Grails interactive
console:

$ cd helloworld
$ grails

https://github.com/grails/grails-core/releases

Y ou should see a prompt that looks like this:

Graeme-Rochers—iMac:helloworld graemerocher$ grails
I Enter o script name to run. Use TAB for completion:
grails>

What we want is a simple page that just prints the message "Hello World!" to the browser.
In Grails, whenever you want a new page you just create a new controller action for it. Since
we don’'t yet have a controller, let’ s create one now with the create-controller command:

grail s> create-controller hello

Don't forget that in the interactive console, we have auto-completion on command names.
So you can type "cre" and then press <tab> to get alist of al create-* commands. Type afew
more letters of the command name and then <tab> again to finish.

The above command will create a new controller in the grai 1 s- app/ cont rol 1 ers/ hel I owor | d
directory called Hel 1 ocontrol 1 er. groovy. Why the extranei 1 owor 1 d directory? Becausein Java
land, it’s strongly recommended that all classes are placed into packages, so Grails defaults
to the application name if you don’t provide one. The reference page for create-controller
provides more detail on this.

We now have a controller so let’s add an action to generate the "Hello World!" page. In any
text editor, edit the new controller—the el 1 ocont rol 1 er . groovy file—by adding arender line.
The edited file's code should look like this:

package hel |l oworl d
class HelloController {

def index() {
render "Hello World!"
}

}

The action is simply amethod. In this particular case, it calls a special method provided by
Grails to render the page.

Job done. To see your application in action, you just need to start up a server with another
command called run-app:

grails> run-app

Thiswill start an embedded server on port 8080 that hosts your application. Y ou should now
be able to access your application at the URL http://localhost:8080/ - try it!

Note that in previous versions of Grails the context path was by default the name of the
application. If you wish to restore this behavior you can configure a context path in
grails-app/conf/application.ym .

server:

http://localhost:8080/

context Path: /hell oworld

With the above configuration in place the server will instead startup at the URL
http://|ocalhost:8080/helloworld/.
If you see the error "Server failed to start for port 8080: Address already in use”, then it
means another server is running on that port. Y ou can easily work around this by running
your server on adifferent port using run-app -port=9090. '9090" is just an example: you can
pretty much choose anything within the range 1024 to 49151.

The result will look something like this:

Nr Grails Application Status - Artefacts ~ Installed Plugins -

b) ¢

Welcome to Grails

Congratulations, you have sucoessfully started your first Grails application! At the moment this is the default page, Teel free to modify it 1o
either redirect to a controller or cisplay whatever coment you may choosa, Below i a list of controliers that are cumrently deploved in this
application, chick on each to executa its default action:

Available Controllers:
* helioword HeloGontroler

Thisisthe Grailsintro page which isrendered by the grai i s- app/ vi ew i ndex. gsp file. It detects
the presence of your controllers and provides links to them. Y ou can click on the
"HelloController" link to see our custom page containing the text "Hello World!". Voila!

Y ou have your first working Grails application.

One final thing: a controller can contain many actions, each of which correspondsto a
different page (ignoring AJAX at this point). Each page is accessible via a unique URL that
is composed from the controller name and the action name:
/<appname>/<controller>/<action>. This means you can access the Hello World page via
/helloworld/hello/index, where 'hello' is the controller name (remove the 'Controller' suffix
from the class name and lower-case the first letter) and ‘index’ is the action name. But you
can also access the page via the same URL without the action name: thisis because 'index' is
the default action. See the end of the controllers and actions section of the user guide to find
out more on default actions.

http://localhost:8080/helloworld/
http://localhost:8080/helloworld/hello/index

2.5 Using I nteractive Mode

Grails 3.0 features an interactive mode which makes command execution faster since the
JVM doesn’'t have to be restarted for each command. To use interactive mode simple type
‘grails from the root of any projects and use TAB completion to get alist of available
commands. See the screenshot below for an example:

& 00 bookstore — java — Fdx22 e

bash | java bash bash
Graeme-Rochers—iMac:bookstore graemerocher§ grails
| Enter a script name to run. Use TAB for completion:

grails> create-s

cregte-script create-service
groils> create-service bookstore.Book

For more information on the capabilities of interactive mode refer to the section on
Interactive Mode in the user guide.

2.6 Getting Set Up in an IDE

IntelliJ IDEA

IntelliJ IDEA is an excellent IDE for Grails 3.0 development. It comesin 2 editions, the free
community edition and the paid-for ultimate edition.

The community edition can be used for most things, although GSP syntax higlighting is only
part of the ultimate edition

Y ou can always open GSP filesin the HTML editor if you just want highlighting in the
community edition.

http://www.jetbrains.com/idea

To get started with Intellij IDEA and Grails 3.0 simply gotoriie / open and point IDEA at
your bui I d. gradi e file to import and configure the project.

TextMate, Sublime, VIM etc.

There are several excellent text editors that work nicely with Groovy and Grails. See below
for references:

* A TextMate bundle exists Groovy / Grails support in Textmate

® A Sublime Text plugin can be installed via Sublime Package Control for the Sublime Text
Editor.

® Seethis post for some helpful tips on how to setup VIM as your Grails editor of choice.

® An Atom Packageis available for use with the Atom editor.

2.7 Convention over Configuration

Grails uses "convention over configuration” to configure itself. This typically means that the
name and location of filesis used instead of explicit configuration, hence you need to
familiarize yourself with the directory structure provided by Grails.
Here is a breakdown and links to the relevant sections:
® grails-app - tOp level directory for Groovy sources
® conf - Configuration sources
® controllers - Web controllers- The Cin MVC.

® domain - The application domain.

® 18n - Support for internationalization (i18n).

® services - The service layer.

® taglib- Taglibraries.

® uils - Grails specific utilities.

® views - Groovy Server Pages or JSON Views- TheV in MVC.
® scripts - Code generation scripts.
® src/min/ groovy - SUPPOrting sources

® src/test/groovy - Unit and integration tests.

2.8 Running and Debugging an Application

https://github.com/textmate/groovy-grails.tmbundle
http://macromates.com
https://github.com/osoco/sublimetext-grails
http://www.sublimetext.com
http://www.sublimetext.com
http://www.objectpartners.com/2012/02/21/using-vim-as-your-grails-ide-part-1-navigating-your-project/
https://atom.io/packages/atom-grails
https://atom.io
http://views.grails.org/latest

Grails applications can be run with the built in Tomcat server using the run-app command
which will load a server on port 8080 by default:

grails run-app

Y ou can specify adifferent port by using the - port argument:

grails run-app -port=8090

Note that it is better to start up the application in interactive mode since a container restart is
much quicker:

$ grails

grails> run-app

| Grails application running at http://local host:8080 in environnment: devel oprent
grail s> stop-app

| Shutting down application...

| Application shutdown.

grails> run-app

| Grails application running at http://Ilocal host:8080 in environnment: devel oprent

Y ou can debug agrails app by simply right-clicking on the app i cati on. groovy Classin your
IDE and choosing the appropriate action (since Grails 3).

Alternatively, you can run your app with the following command and then attach a remote
debugger toit.

grails run-app --debug-jvm

More information on the run-app command can be found in the reference guide.

2.9 Testing an Application

The create-+ commandsin Grails automatically create unit or integration tests for you within
the src/test/groovy directory. It is of course up to you to populate these tests with valid test
logic, information on which can be found in the section on Unit and integration tests.

To execute tests you run the test-app command as follows:

grails test-app

2.10 Deploying an Application
Grails applications can be deployed in a number of different ways.
If you are deploying to atraditional container (Tomcat, Jetty etc.) you can create a Web

Application Archive (WAR file), and Grails includes the war command for performing this
task:

grails war

Thiswill produce aWAR file under the bui 1 /11 bs directory which can then be deployed as
per your container’ s instructions.

Note that by default Grails will include an embeddable version of Tomcat inside the WAR

file, this can cause problems if you deploy to adifferent version of Tomcat. If you don't
intend to use the embedded container then you should change the scope of the Tomcat
dependencies to provi ded prior to deploying to your production container in bui i d. gradi e:

provi ded "org. springframework. boot: spring-boot-starter-tontat”

If you are building aWAR file to deploy on Tomcat 7 then in addition you will need to
change the target Tomcat version in the build. Grailsis built against Tomcat 8 APIs by
default. To target a Tomcat 7 container, insert alineto bui i d. gradi e Above the dependencies { }
section:

ext['tontat.version'] = "'7.0.59
Unlike most scripts which default to the devel oprent environment unless overridden, the war

command runs in the product i on €nvironment by default. Y ou can override this like any script
by specifying the environment name, for example:

grails dev war

If you prefer not to operate a separate Servlet container then you can simply run the Grails
WAR file asaregular Java application. Example:

grails war
java -Dgrails.env=prod -jar build/libs/mywar-0.1.war

When deploying Grails you should always run your containers JVM with the - server option
and with sufficient memory alocation. A good set of VM flags would be:

-server -Xnmk768M - XX: MaxPer nSi ze=256m

2.11 Supported Java EE Containers

Grails runs on any container that supports Servlet 3.0 and above and is known to work on
the following specific container products:

¢ Tomcat 7

¢ GlassFisn 3 or above

® Resin4 or above

® JBoss 6 or above

® Jetty 8 or above

® Oracle Weblogic 12c or above

* |IBM WebSphere 8.0 or above

It'srequired to set "-Xverify:none" in "Application servers > server > Process Definition >
JavaVirtual Machine > Generic VM arguments” for older versions of WebSphere. Thisis
no longer needed for WebSphere version 8 or newer.

Some containers have bugs however, which in most cases can be worked around. A list of

http://grails.org/Deployment

known deployment issues can be found on the Grails wiki.

2.12 Creating Artefacts

Grails ships with afew convenience targets such as create-controller, create-domain-class
and so on that will create controllers and different artefact types for you. NOTE: These are
just for your convenience and you can just as easily use an IDE or your favourite text editor.
For example to create the basis of an application you typically need a domain model:

grails create-app helloworld
cd helloworld
grails create-donuin-class book

Thiswill result in the creation of adomain class at gr ai | s- app/ domai n/ hel | owor | d/ Book. gr oovy
such as:

package hel |l oworl d
cl ass Book {

}

There are many such creat e-* cOmmands that can be explored in the command line reference
guide.

To decrease the amount of time it takes to run Grails scripts, use the interactive mode.

2.13 Generating an Application

To get started quickly with Grailsit is often useful to use afeature called scaffolding to
generate the skeleton of an application. To do this use one of the generat e-* cOmmands such
as generate-all, which will generate a controller (and its unit test) and the associated views:

grails generate-all helloworl d. Book

3 Upgrading from Grails 3.2.x

Grails 3.3 includes several changes to dependencies and Event publishing that may require
changesto your application if you are upgrading from Grails 3.2.x.

For information on upgrading from versions of Grails prior to Grails 3.2.x, see the Grails
3.2.x documentation on upgrading

GORM 6.1 Upgrade

GORM 6.1 includes changes that may require you to change your application.
GORM Async Now Optional

Notably grai I s-dat ast or e- gor m async 1S NOW optional and if you use the task method of GORM
you will need to manually implement the asyncentity trait.

Domain Autowiring Disabled

http://grails.org/Deployment
http://docs.grails.org/3.2.x/guide/upgrading.html
http://docs.grails.org/3.2.x/guide/upgrading.html
http://gorm.grails.org/latest/hibernate/manual/index.html#upgradeNotes

Domain class autowiring is disabled by default due to itsimpact on performance. Y ou can
re-enable autowiring for al domains using the Default Mapping setting:

grails-app/conf/application.groovy

grails.gormdefaul t. mapping = {
autowire true
}

You can turn it on only for one domain class:

grails-app/domai n/demo/Book.groovy

class Book {
BookSer vi ce bookServi ce

String nane

static nmapping {
autowire true

}

Flush Mode now COMMIT by Default

The default flush mode has been change to cow 1 due to the impact the previous flush mode
Aauto has on read performance. Y ou can switch back to auro use the hi bernate. f1 ush. mode Setting
in application.ym

TransactionManager Chaining for Multiple Data Sour ces Disabled by Default

In previous versions of Grails for multiple data sources a best effort transaction chain was
used to attempt to manage a transaction across all configured data sources.

Asof Grails 3.3 thisisdisabled asit caused confusion sinceit isn’'t atrue XA
implementation and also impacts performance as for every transaction you have a
transaction for each data source bound regardiessif that is the actual requirement.

If your application depends on this feature you can re-enable it with the following
configuration:

grails:
transaction:
chai nedTr ansact i onManager :
enabl ed: true
bl ackl i stPattern: '.*'

Tomcat JDBC

GORM 6.1 and above now supports multiple connection pool options, so the t oncat - j dbe
dependency is now optional. If you are upgrading you may need to add it (or another pool
implementation) to your bui | d. gr adi e:

build.gradle

runtime 'org.apache.tontat:toncat-j dbc'

@TestMixin, @TestFor etc. Deprecated

http://gorm.grails.org/latest/hibernate/manual/index.html#_the_default_mapping_constraints

Since Grails 3.3, the Grails Testing Support Framework is used for all unit tests. The new
testing framework is much simpler and provides a set of traits that improve readability,
debugging and code completion. An example hello world test can be seen below:

i nport spock. | ang. Specification
inmport grails.testing.web.controllers. ControllerUnitTest

class HelloControllerTests extends Specification inplenents ControllerUnitTest<HelloController> {
voi d "Test nessage action"() {
when: " The nessage action is invoked"
controll er. message()
then:"Hello is returned"
response.text == 'Hell o'

}
}

For more information on writing tests with Grails Testing Support see the dedicated
documentation.

To simplify upgrades you can can still use the previous AST transformation based
framework by adding the following dependency to your Grails application:

build.gradle

testConpile "org.grails:grails-test-mxins:3.3.0"
Default Logger Name

In previous versions of Grails, if you did not specify alogger in the controller, service, etc, a
I og Variable wasinjected for you. The naming convention of that logger was
grails. app. ${art ef act Type} . package. cl ass. FOr example:

grails.app.controllers.foo.bar. MyController

To make the logger names more intuitive as well as to increase consistency between custom
code, pl ugin dependenCI es, and third party libraries, the grai i s. app. ${art ef act Type} CONvention
was removed. The same class as above will now be referenced the same way as any standard
class. The way the i og variable getsinjected was also changed to defer to the SIf4j
transformation. That meansit is no longer necessary to check it (i og. i sbebugEnabl ed()) .

The downside of thischangeisthat it isn’t immediately ssmple to set up the same logging

configuration for al controllers, for example. We think this can be solved with a package
naming strategy that represents what your requirements are.

Dependency Alterations

In an effort to trim the size of the produced WAR file by Grails several dependencies are no
longer resolved transtively including:

°
commons- | ang
gson

aspect j weaver

aspectjrt

https://testing.grails.org
https://testing.grails.org
https://testing.grails.org

L J
ehcache

If you are upgrading and have referenced any of these dependencies in your application you
may need to alter your build to reference them.

Spring Boot 1.5.x

Spring Boot 1.5.x removes a number of deprecated classes, notably several of the classes
within the or g. spri ngf r amewor k. boot . cont ext . enbedded Package.

If your application is referencing any of the classes within this package you will need to
alter your imports tO USe or g. spri ngf r amewor k. boot . web. ser vl et instead.

All classesin the org. spri ngf r amewor k. boot . cont ext . web package have been deprecated and
relocated per the Spring Boot 1.4 Release Notes.

Reactor 2.x Deprecated and Removed

Since Reactor 2.x is no longer being maintained and a new EventBus abstraction has been
implemented, Reactor 2.x and all its dependencies have been removed.

A compatibility layer has been provided to allow classes compiled with the previous version

that uses Reactor to run, however all plugins and application code should be re-compiled
and direct references to Reactor 2.x should be removed.

Externalized Plugins

Severa plugins and libraries have been separated from Grails core into standalone projects.
The following table summarizes the previous artefact id, the new artefact id and the location
of the new sources:

Table 1. Externalized Plugins

Sour ces Previous Artefact 1D New Artefact |D

@ org.grails:grails-plugin-gsp org.grails.plugins:gsp
Converters org.grails:grails-plugin-converters org.grails. plugins:converters
Agmc org.grails:grails-plugin-async org.grails.plugins:async
Events org.grails:grails-plugin-events org.grails. plugins:events
Tesxlng Mixin org.grails:grails-plugin-testing org.grails:grails-test-mxins

New Cache Plugin

http://async.grails.org/latest/api/grails/events/bus/EventBus.html
https://github.com/grails/grails-gsp
https://github.com/grails-plugins/grails-plugin-converters
https://github.com/grails/grails-async
https://github.com/grails/grails-async
https://github.com/grails-plugins/grails-test-mixin-plugin

The Cache plugin has been re-written to no longer use Spring proxies but AST
transformations instead.

Thisimproves startup and runtime performance, however one cavest is controller action
response caching is no longer supported.

GrailsDomain Class APl Deprecated

The legacy classes that represent domain classes and their properties have been deprecated
in favor of the mapping context API.

The reason for thisis to avoid duplicate parsing of the same class data between GORM and
Grails and reduce overall startup time.

Theinternal implementation of the methods in those classes now delegates to the mapping
context. Due to that change, information about your domain classesis not available until the
application context is available.

In previous versions of Grailsit was possible to access GrailsDomainClass instances and
inspect the GrailsDomainClassProperty propertiesinside of the dow t hspring method in a
plugin, for example.

If you have code that follows that example, an error will be thrown that looks like " The
method ... cannot be accessed before GORM has initialized". The solution isto move any
logic that executes before the context is available to somewhere el se that executes after the
context is available.

All code that uses the GrailsDomainClass or GrailsDomainClassProperty classes should be
re-written to use the mapping context api.

To get started, inject the grai | sbomai na assMappi ngcont ext bean. See the api documentation for
more information on the MappingContext, PersistentEntity (GrailsDomainClass), and
PersistentProperty (GrailsDomainClassProperty).

The following table summarizes the deprecations:

Table 2. Deprecated Grails Domain Class AP

Deprecated Classor Interface Replacement
GrailsDomainClass PersistentEntity
GrailsDomainClassProperty PersistentProperty

The & ai 1 sbomai na assProperty iNterface had many more methods to eval uate the type of the
property such asi soeTome, i soneTonany €tC. and While per si st ent property does not provide
direct equivalents you can usei nstanceof as areplacement using one of the subclasses found

in the org.grails.datastore.mapping.model .types package.

The following table summarizes this:

http://docs.grails.org/latest/api/grails/core/GrailsDomainClass.html
http://docs.grails.org/latest/api/grails/core/GrailsDomainClassProperty.html
http://docs.grails.org/latest/api/grails/core/GrailsDomainClass.html
http://docs.grails.org/latest/api/grails/core/GrailsDomainClassProperty.html
http://gorm.grails.org/latest/api/org/grails/datastore/mapping/model/MappingContext.html
http://gorm.grails.org/latest/api/org/grails/datastore/mapping/model/PersistentEntity.html
http://gorm.grails.org/latest/api/org/grails/datastore/mapping/model/PersistentProperty.html
http://docs.grails.org/latest/api/grails/core/GrailsDomainClass.html
http://gorm.grails.org/latest/api/org/grails/datastore/mapping/model/PersistentEntity.html
http://docs.grails.org/latest/api/grails/core/GrailsDomainClassProperty.html
http://gorm.grails.org/latest/api/org/grails/datastore/mapping/model/PersistentProperty.html
http://gorm.grails.org/latest/api/org/grails/datastore/mapping/model/types/package-summary.html

Table 3. Deprecated GrailsDomainClassProperty method replacements

Deprecated Classor Interface Replacement

i sAssoci ation() property instanceof Association
i sOneToOne() property instanceof OneToOne

i sManyToOne() property instanceof ManyToOne

i sEmbedded() property instanceof Enbedded

i sManyToMany() property instanceof ManyToMany
i sBasi cCol | ecti onType() property instanceof Basic

GrailsValidator and ConstrainedProperty APl Deprecated

Gralls previous validation API (part of the grai1s. val i dati on package) has been externalized
into a separate project not part of the grai 1 s- dat ast or e- gor m val i dat i on dependency.

This means that some interfaces previously part of Grails core are deprecated and the
replacment in the external project should be used, including:

Table 4. Deprecated Grails Validator Classes

Deprecated Classor Interface Replacement
GrailsDomainClassValidator PersistentEntityV alidator
CascadingV alidator CascadingV alidator
ConstrainedProperty ConstrainedProperty
Constraint Constraint
AbstractConstraint AbstractConstraint

Generaly all classeswithinthe org. graiis. val i dati on package are now deprecated.

To register a custom constraint you should now use the ConstraintRegistry interface instead.

http://docs.grails.org/latest/api/org/grails/validation/GrailsDomainClassValidator.html
http://gorm.grails.org/latest/api/grails/gorm/validation/PersistentEntityValidator.html
http://docs.grails.org/latest/api/grails/validation/CascadingValidator.html
http://gorm.grails.org/latest/api/grails/gorm/validation/CascadingValidator.html
http://docs.grails.org/latest/api/grails/validation/ConstrainedProperty.html
http://gorm.grails.org/latest/api/grails/gorm/validation/ConstrainedProperty.html
http://docs.grails.org/latest/api/grails/validation/Constraint.html
http://gorm.grails.org/latest/api/grails/gorm/validation/Constraint.html
http://docs.grails.org/latest/api/grails/validation/AbstractConstraint.html
http://gorm.grails.org/latest/api/org/grails/datastore/gorm/validation/constraints/AbstractConstraint.html
http://gorm.grails.org/latest/api/org/grails/datastore/gorm/validation/constraints/registry/ConstraintRegistry.html

The default ValidatorRegistry implements the const rai nt regi st ry interface and can be
autowired into any controller or service by declaring the following property:

Val i dat or Regi stry gornVal i dat or Regi stry

gor nVal i dat or Regi stry. addConstrai nt (MyConstrai nt)
Grails Transactional AST Transforms Depr ecated

The transaction management AST transforms that shipped as part of Grails have been ported
to GORM and improved to make it possible to use them outside of Grails.

With thisin mind Grails versions of @ransactional @and @rol 1 back found within the
grail's. transacti on package have been deprecated in favour of GORMs versions. Y ou should
change your imports to use the GORM version instead of the Grails version.

The following table summarizes the deprecated classes and their replacements:

Table 5. Deprecated Grails Transaction Transforms

Deprecated Classor Interface Replacement
grails.transaction.Transactional grails.gorm.transactions. Transactional
grails.transaction.Rollback grails.gorm.transactions.Rollback
grails.transaction.NotTransactional grails.gorm.transactions.NotTransactional

Spring Proxiesfor Services No Longer Supported

Earlier versions of Grails supported the use of Spring proxies for transaction management,
but this support was disabled by default in Grails 3.2.x and devel opers encouraged to use the
@ransactional AST transforms instead.

In Grails 3.3 the support for Spring proxies has been dropped completely and you must use
Grails AST transforms.

If you wish to continue to use Spring proxies for transaction management you will have to
configure them manually use the appropriate Spring configuration.

Datasour ce Plugin Refactor

In previous versions of Grails and GORM the multiple data sources support relied on Grails
data sources plugin. The logic for configuring multiple data sources has moved to GORM
and as aresult of major changes to the dataSources plugin, beans for the lazy and unproxied
representation of a dataSource are no longer available.

The beans include:

°
dat aSour ceUnpr oxi ed

http://gorm.grails.org/latest/api/org/grails/datastore/mapping/validation/ValidatorRegistry.html
http://docs.grails.org/latest/api/grails/transaction/Transactional.html
http://gorm.grails.org/latest/api/grails/gorm/transactions/Transactional.html
http://docs.grails.org/latest/api/grails/transaction/Rollback.html
http://gorm.grails.org/latest/api/grails/gorm/transactions/Rollback.html
http://docs.grails.org/latest/api/grails/transaction/NotTransactional.html
http://gorm.grails.org/latest/api/grails/gorm/transactions/NotTransactional.html

°
dat aSour ceLazy

If you are referencing these beans you will need to remove these references and unwrap the
single dat asour ce Proxy manually.

Task Groups

Several tasks have had their groups changed to better reflect their purpose. If you' re having
trouble finding a task, look through the different groups.

L egacy JSON Builder Option Removed

In a previous version of Grails, the JSON builder used by default for rendering JSON inline
was changed. The previous behavior of using converters to build the JSON was able to be
re-enabled by setting graiIs.json. I egacy. bui I der tO true. In Grails 3.3 that setting has been
removed and it is no longer possible to use the legacy converter API to render JSSON inline
viatherender method.

4 Configuration

It may seem odd that in aframework that embraces " convention-over-configuration” that we
tackle this topic now. With Grails default settings you can actually develop an application
without doing any configuration whatsoever, as the quick start demonstrates, but it's
important to learn where and how to override the conventions when you need to. Later
sections of the user guide will mention what configuration settings you can use, but not how
to set them. The assumption is that you have at least read the first section of this chapter!

4.1 Basic Configuration

Configuration in Grailsis generaly split across 2 areas. build configuration and runtime
configuration.

Build configuration is generaly done via Gradle and the bui 1 d. gradi e file. Runtime
Configuration is by default Spe(:|f|ed inYAML in the grai |l s-app/ conf/application.yn file.

If you prefer to use Grails 2.0-style Groovy configuration then it is possible to specify
configuration using Groovy’s ConfigSlurper syntax. Two Groovy configuration files are
available: grail s-app/ conf/application. groovy and grail s-app/ conf/runtime. groovy.

1. Useapplication. groovy fOr configuration that doesn’t depend on application classes

2. Useruntine. groovy for configuration that does depend on application classes

This separation is necessary because configuration values defined in appl i cati on. groovy are
available to the Grails CLI, which needs to be able to l0ad appi i cati on. groovy before the
application has been compiled. References to application classesin appl i cati on. groovy Will
cause an exception when these commands are executed by the CLI:

http://docs.groovy-lang.org/latest/html/documentation/#_configslurper

Error occurred running Grails CLI:
startup failed:scriptl14738267015581837265078. groovy: 13: unable to resolve class com foo. Bar

For Groovy configuration the following variables are available to the configuration script:

Variable Description
L ocation of the home directory for the
userHome account that is running the Grails application.
Location of the directory where you installed
grailsHome Grails. If the erai Ls_Hove environment variable
iSset, it isused.
The application name as it appearsin
appName build.gradle.
. The application version asit appearsin
appVersion build.gradle.
For example:

ny.tnp.dir = "${userHone}/.grails/tnp"

If you want to read runtime configuration settings, i.e. those defined in appi i cati on. yni , USE
the grailsApplication object, which is available as a variable in controllers and tag libraries:

class MyController {

def hello() {
def recipient = grailsApplication.config.getProperty('foo.bar.hello")

render "Hello ${recipient}"

}

The conti g property of the grai 1 sapplication Object is an instance of the Config interface and
provides a number of useful methods to read the configuration of the application.

In particular, the get property method (seen above) is useful for efficiently retrieving
configuration properties, while specifying the property type (the default type is String)
and/or providing a default fallback value.

class MyController {

def hell o(Recipient recipient) {
I/l Retrieve Integer property 'foo.bar.nax.hellos', otherw se use value of 5
def max = grail sApplication.config.getProperty('foo.bar.nax.hellos', Integer, 5)

/I Retrieve property 'foo.bar.greeting’ wthout specifying type (default is String), otherw se use value "Hello"
def greeting = grailsApplication.config.getProperty('foo.bar.greeting', "Hello")

def nessage = (recipient.receivedHel | oCount >= max) ?
"Sorry, you've been greeted the max nunber of tinmes" : "${greeting}, ${recipient}”

}

http://docs.grails.org/3.3.8/api/grails/core/GrailsApplication.html
http://docs.grails.org/3.3.8/api/grails/config/Config.html

render nessage

}
}

Notice that the confi g instance is a merged configuration based on Spring’ s PropertySource
concept and reads configuration from the environment, system properties and the local
application configuration merging them into a single object.

Gai | sAppl i cati on CaN be easily injected into services and other Grails artifacts:

inport grails.core.*

class MyService {
G ail sApplication grail sApplication

String greeting() {
def recipient = grailsApplication.config.getProperty('foo.bar.hello")
return "Hello ${recipient}"”
}
}

Finally, you can also use Spring’s Value annotation to inject configuration values:

i mport org.springfranework. beans. factory. annotation. *
class MyController {

@/al ue(' ${foo. bar. hello}")

String recipient

def hello() {
render "Hello ${recipient}"”
}

}

In Groovy code you must use single quotes around the string for the value of the vai ue
annotation otherwise it isinterpreted as a GString not a Spring expression.

Asyou can see, when accessing configuration settings you use the same dot notation as
when you define them.

4.1.1 Optionsfor the YML format Config

application.yn Wasintroduced in Grails 3.0 for an alternative format for the configuration
tasks.

Using system properties/ command line arguments

Suppose you are using the sosc_cowect av_str N6 cOmmand line argument and you want to
access the same in the yml file then it can be done in the following manner:

producti on:
dat aSour ce:
url: ' ${JDBC_CONNECTI ON_STRI NG '

Similarly system arguments can be accessed.

Y ou will need to havethisin bui d. gradi e tO modlfy the boot Run target if grails run-app isused
to start the application

boot Run {
systenProperties = System properties

For testing the following will need to change the test task as follows

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/PropertySource.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/Value.html

test {
systenProperties = System properties

}

External configuration

Grailswill read appi i cation. (properties|yni) fromthe./contig Or the current directory by

default. As Grailsis a SpringBoot configuration options are available as well, for

documentation please consult:
https:.//docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external -config.htmi#boot-features

4.1.2 Built in options
Grails has a set of core settings that are worth knowing about. Their defaults are suitable for

most projects, but it’s important to understand what they do because you may need one or
more of them later.

Runtime settings

On the runtime front, i.€. grai I s- app/ conf/ appl i cati on. ynt , there are quite a few more core
Settings:

® grails. enable. nativezascii - Set thisto falseif you do not require native2ascii conversion of
Grailsi18n properties files (default: true).

® grails.views. defaul t. codec - Setsthe default encoding regime for GSPs - can be one of 'none,
'html’, or 'base64’ (default: 'none’). To reduce risk of XSS attacks, set thisto 'html'.

® grails.views. gsp. encoding - Thefile encoding used for GSP Sourcefiles(default: IUtf-8').

® grails.mne.file. extensions - WWhether to use the file extension to dictate the mime typein
Content Negotiation (default: true).

® grails. mne types - A Map of supported mime types used for Content Negotiation.

® grails.serverURL - A string specifying the server URL portion of absolute links, including
server name e.g. grails.serverURL="http://my.yourportal.com". See createl.ink. Also used
by redirects.

® grails.vieus. gsp. si temesh. preprocess - Determines whether SiteMesh preprocessing happens.
Disabling this slows down page rendering, but if you need SiteMesh to parse the generated
HTML from a GSP view then disabling it is the right option. Don’t worry if you don’t
understand this advanced property: leave it set to true.

® grails.reload. excludes aNd grails. reload.incl udes - Configuri ng these directives determines the
reload behavior for project specific source files. Each directive takes alist of strings that are
the class names for project source files that should be excluded from reloading behavior or
included accordingly when running the application in devel opment with the r un- app
command. If thegraiis.reload. incl udes directive is configured, then only the classesin that
list will be reloaded.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-application-property-files
http://gsp.grails.org/latest/ref/Tags/createLink.html

4.1.3 Logging

By default logging in Grails 3.0 is handled by the Logback |ogging framework and can be
ConfigurEd With the grai I s- app/ conf /1 ogback. groovy fil€.

If you prefer XML you can replace the i ogback. gr oovy file With ai ogback. xm file instead.

For more information on configuring logging refer to the Logback documentation on the
subject.

4.1.3.1 Logger Names

Grails artifacts (controllers, services ...) get injected a1 og property automatically.

Prior to Grails 3.3.0, the name of the logger for Grails Artifact followed the convention
grails.app. <type>. <cl assNane>, where type isthe type of the artifact, for example, controllers OF
servi ces, and ci assnane 1S the fully qualified name of the artifact.

Grails 3.3.x simplifies logger names. The next examples illustrate the changes:

BookControl | er. groovy |located at grail s-app/ controll ers/con conpany NOT annotated with @l f4)
Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookControl | er grails.app.controllers.com conpany. BookControl | er
BookControl | er. groovy located at grail s-app/controll ers/com conpany annotated with @ 4]
Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookControl | er com conpany. BookControl | er

BookSer vi ce. gr oovy located at grai | s-app/ servi ces/ conf conpany NOT annotated with @ f4j
Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookSer vi ce grails.app. services.com conpany. BookServi ce

BookSer vi ce. gr oovy located at grail s-app/ servi ces/ conl conpany annotated with @l 1 4

http://logback.qos.ch
http://logback.qos.ch/manual/groovy.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)
com conpany. BookSer vi ce com conpany. BookSer vi ce
BookDet ai | . gr oovy located at src/ i n/ gr oovy/ conl conpany annotated with @si 1 4

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com conpany. BookDet ai | com conpany. BookDet ai |

4.1.3.2 Masking Request Parameters From Stacktrace
L ogs

When Grails logs a stacktrace, the log message may include the names and values of all of
the request parameters for the current request. To mask out the values of secure request
parameters, specify the parameter names in the grai i s. excepti onresol ver . par ans. excl ude CONfig

property:

grails-app/conf/application.yaml

grails:
exceptionresol ver:
par ans:
excl ude:
- password
- creditCard

Request parameter logging may be turned off altogether by setting the

grails. exceptionresol ver. | ogRequest Par anet er s Config property to false. The default valueistrue
when the application is running in DEVELOPMENT mode and false for all other
environments.

grails-app/conf/application.yaml

grails:
exceptionresol ver:
| ogRequest Par aneters: fal se

4.1.3.3 External Configuration File

If you set the configuration property 1 oggi ng. confi g, YOU Can iNsStruct Logback t0 use an external
configuration file.

grails-app/conf/application.yml

| oggi ng:
config: /Users/me/config/l ogback. groovy

Alternatively, you can supply the configuration file location with a system property:

$./gradl ew - D oggi ng. confi g=/ User s/ ne/ confi g/ | ogback. groovy boot Run

http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html

Or, you could use an environment variable:

$ export LOGE NG _CONFI G=/ User s/ me/ confi g/ | ogback. gr oovy
$./gradl ew boot Run

4.1.4 GORM

Grails provides the following GORM configuration options:

® grails.gormfail merror - If Set tOtrue, CaUSES the save() Method on domain classes to throw a
grails.validation. VvalidationException If validation fails during asave. This option may also be
assigned alist of Strings representing package names. If the value is alist of Strings then the
failOnError behavior will only be applied to domain classes in those packages (including
sub-packages). See the save method docs for more information.

For example, to enable failOnError for al domain classes:

grails:
gorm
fail OnError: true

and to enable failOnError for domain classes by package:

grails:
gorm
fail OnError:
- com conpanynane. sonepackage
- com conpanynane. soneot her package

® grails. gormautoFl ush - If Set tO true, Causes the merge, save and delete methods to flush the
session, replacing the need to explicitly flush using save(f1ush: true).

4.1.5 Configuringan HTTP proxy

To setup Grailsto use an HTTP proxy there are two steps. Firstly you need to configure the
grai1's CLI to be aware of the proxy if you wish to use it to create applications and so on.
This can be done using the arai Ls_crts environment variable, for example on Unix systems:

export GRAILS_OPTS="-Dhttps. proxyHost =127.0.0.1 -Dhttps. proxyPort=3128 -Dhttp.proxyUser=test -Dhttp.proxyPassword=test"

The default profile repository isresolved over HTTPS SO ht t ps. proxyPort @nd htt ps. proxyUser
are used, however the username and password are specified with ntt p. proxyuser and
http. proxyPasswor d

For Windows systems the environment variable can be configured under vy

Conput er/ Advanced/ Envi ronnment Vari abl es.

With this configuration in place the grai 1 s command can connect and authenticate viaa
proxy.

Secondly, since Grails uses Gradle as the build system, you need to configure Gradle to
authenticate via the proxy. For instructions on how to do this see the Gradle user guide

section on the topic.

4.2 The Application Class

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy

Every new Grails application features an appl i cati on class within the grai i s-apprini t directory.

The appi i cati on Class subclasses the Grail sSAutoConfiguration class and features astatic voi d
mai n Method, meaning it can be run as aregular application.

4.2.1 Executing the Application Class

There are several ways to execute the appl i cati on Class, if you are using an IDE then you can
simply right click on the class and run it directly from your IDE which will start your Grails
application.

Thisisalso useful for debugging since you can debug directly from the IDE without having
to connect a remote debugger when using the run- app - - debug- j vmcommand from the
command line.

Y ou can a'so package your application into arunnable WAR file, for example:

$ grails package
$ java -jar build/libs/nmyapp-0. 1. war

Thisisuseful if you plan to deploy your application using a container-less approach.

4.2.2 Customizing the Application Class
There are several ways in which you can customize the appi i cati on Class.
Customizing Scanning

By default Grails will scan al known source directories for controllers, domain class etc.,
however if there are packages in other JAR files you wish to scan you can do so by
overridi ng the packageNanes() method of the Appl i cation class:

class Application extends G ail sAutoConfiguration {

@verride
Col | ecti on<String> packageNanes() {
super . packageNanes() + ['my.additional.package']

}
Registering Additional Beans

The appl i cati on Class can aso be used as a source for Spring bean definitions, simply define
amethod annotated with the Bean and the returned object will become a Spring bean. The
name of the method is used as the bean name:

class Application extends G ail sAutoConfiguration {
@Bean

M/Type nyBean() {
return new MyType()
}

}

4.2.3 The Application LifeCycle

http://docs.grails.org/3.3.8/api/grails/boot/config/GrailsAutoConfiguration.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Bean.html

The appli cati on Class also implements the GrailsA pplicationLifeCycle interface which al
plugins implement.

This means that the appl i cati on Class can be used to perform the same functions as a plugin.
Y ou can override the regular plugins hooks such as dow t hspri ng, dow t happl i cati onCont ext and
so on by overriding the appropriate method:

class Application extends Gail sAutoConfiguration {
@verride
Cl osure doWthSpring() {
{->
my Spri ngBean(My Type)
}

4.3 Environments

Per Environment Configuration

Grails supports the concept of per environment configuration. The appli cation.ym and

appl i cation. groovy filesin the graiis-app/cont directory can use per-environment configuration
using either YAML or the syntax provided by ConfigSlurper. As an example consider the
following default appi i cation. ymi definition provided by Grails:

envi ronnents:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc:h2: mem devDb; MWCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
test:
dat aSour ce:
dbCreate: update
url: jdbc:h2: mem test Db; MCC=TRUE; LOCK_TI MEOQUT=10000; DB_CLOSE_ON_EXI T=FALSE
producti on:
dat aSour ce:
dbCreate: update
url: jdbc:h2: prodDb; WCC=TRUE; LOCK_TI MEQUT=10000; DB_CLOSE_ON_EXI T=FALSE
properties:
j mxEnabl ed: true
initial Size: 5

The above can be expressed in Groovy syntax in appl i cati on. groovy as follows:

dat aSour ce {
pool ed = fal se
driverd assName = "org. h2.Driver"
username = "sa"
passwor d "

}
environnents {
devel opnent {
dat aSour ce {
dbCreate = "create-drop"
url = "jdbc: h2: nem devDb"
}
}
test {
dat aSour ce {
dbCreate = "update"
url = "jdbc: h2: nemtest Db"
}

production {
dat aSour ce {
dbCreate = "update"
url = "jdbc: h2: prodDb"

http://docs.grails.org/3.3.8/api/grails/core/GrailsApplicationLifeCycle.html
http://docs.groovy-lang.org/latest/html/documentation/#_configslurper

}
}
}

Notice how the common configuration is provided at the top level and then an environment s
block specifies per environment settings for the abareate and uri properties of the pat asour ce.

Packaging and Running for Different Environments

Grails command line has built in capabilities to execute any command within the context of
a specific environment. The format is:

grail s <<environnent>> <<conmand name>>

In addition, there are 3 preset environments known to Grails: dev, prod, and test for
devel oprent , product i on @Nd test . FOr example to create a WAR for thetest environment you
would run:

grails test war

To target other environments you can pass a grai I s. env Variable to any command:

grails -Dgrails.env=UAT run-app

Programmatic Environment Detection

Within your code, such asin a Gant script or a bootstrap class you can detect the
environment using the Environment class:

inmport grails.util.Environnment

switch (Environnent.current) {
case Environment. DEVELOPMENT:
confi gur eFor Devel opnent ()
br eak
case Environment. PRODUCTI ON:
conf i gur eFor Producti on()
br eak

}

Per Environment Bootstrapping

It's often desirable to run code when your application starts up on a per-environment basis.
To do so you can use the grai I s- app/ i ni t/ Boot St rap. groovy fil€' S support for per-environment
execution:

def init = { ServletContext ctx ->
environnents {
production {
ctx.setAttribute("env", "prod")

devel opnent {
ctx.setAttribute("env', "dev")
}

ctx.setAttribute("foo", "bar")

}

Generic Per Environment Execution

The previous soot st rap example usesthe grai i s. uti . Environment Classinternally to execute.
Y ou can aso use this class yourself to execute your own environment specific logic:

http://docs.grails.org/3.3.8/api/grails/util/Environment.html

Envi ronnment . execut eFor Current Envi ronnent {
production {
/1 do something in production

devel opnent {
/1 do something only in devel opnent
}

}

4.4 The DataSour ce

Since Grailsis built on Java technology setting up a data source requires some knowledge of
JDBC (the technology that stands for Java Database Connectivity).

If you use a database other than H2 you need a JDBC driver. For example for MySQL you
would need Connector/J.

Driverstypically comein the form of a JAR archive. It's best to use the dependency

resolution to resolve the jar if it’s available in a Maven repository, for example you could
add a dependency for the MySQL driver like this:

dependenci es {
runtime 'nmysql:nysql -connector-java: 5. 1. 29

}

Once you have the JAR resolved you need to get familiar with how Grails manages its
database configuration. The configuration can be maintained in either
grail s-app/ conf/application.groovy O grails-app/conf/application.yn. These files contain the
dataSource definition which includes the following settings:

® driveraasshame - The class name of the JDBC driver

® username - The username used to establish a JDBC connection

® password - The password used to establish a JDBC connection

® ui - The JDBC URL of the database

® dboreate - Whether to auto-generate the database from the domain model - one of
‘create-drop’, 'creat€, 'update’ or 'validate

® ool ed - Whether to use a pool of connections (defaults to true)
® |ogsql - Enable SQL logging to stdout
® formatsql - Format Iogged SQL

® dialect - A String or Class that represents the Hibernate dialect used to communicate with
the database. See the org.hibernate.dialect package for available dialects.

® eadonly - If true makesthe DataSource read-only, which results in the connection pool
calllng set ReadOnl y(true) ON each connection

® transactional - If falise leavesthe DataSource' s transactionManager bean outside the chained
BE1PC transaction manager implementation. This only applies to additional datasources.

http://www.mysql.com/downloads/connector/j/
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/dialect/package-summary.html

® persistencelnterceptor - 1 he default datasource is automatically wired up to the persistence
interceptor, other datasources are not wired up automatically unlessthisisset to true

® oroperties - Extraproperties to set on the DataSource bean. See the Tomcat Pool
documentation. Thereis also a Javadoc format documentation of the properties.

® imexport - If raise, Will disable registration of IMX MBeans for al DataSources. By default
JMX MBeans are added for DataSources with j nxenabl ed = true in properties.

A typical configuration for MySQL in appl i cati on. groovy May be something like:

dat aSource {
pool ed = true
dbCreate = "update"
url = "jdbc: nysqgl://Iocal host: 3306/ ny_dat abase"
driverd assName = "com nysql . jdbc. Driver”
di al ect = org. hi bernate. dial ect. MySQL5I nnoDBDi al ect
username = "username"
password = "password"
properties {
j mkEnabl ed = true
initialSize = 5
maxActive = 50

mnldle =5
maxldle = 25
maxWait = 10000

maxAge = 10 * 60000

ti meBet weenEvi cti onRunsM | 1is = 5000

m nEvictableldl eTineMIlis = 60000

val i dati onQuery = "SELECT 1"

val i dati onQueryTi neout = 3

val i dati onl nterval = 15000

testOnBorrow = true

testWiileldle = true

testOnReturn = fal se

jdbclnterceptors = "ConnectionStat e; St at ement Cache(max=200) "
def aul t Transacti onl sol ati on = java. sql . Connect i on. TRANSACTI ON_READ_COWM TTED

When configuring the DataSource do not include the type or the def keyword before any of
the configuration settings as Groovy will treat these aslocal variable definitions and they
will not be processed. For example the following isinvalid:

dat aSour ce {
bool ean pooled = true // type declaration results in ignored |local variable

}

Example of advanced configuration using extra properties:

dat aSour ce {

pool ed = true

dbCreate = "update"

url = "jdbc: nysql://Iocal host: 3306/ ny_dat abase"

driverd assName = "com nysql . jdbc. Driver”

di al ect = org. hi bernate. di al ect. \WySQL5I nnoDBDi al ect

user name = "username"”

password = "password"

properties {
/1 Docunentation for Tontat JDBC Pool
/1 http://tontat.apache.org/tontat-7.0-doc/jdbc-pool . htm #Common_Attri butes
Il https://tontat.apache. org/tontat-7.0-doc/api/org/apache/tontat/jdbc/ pool/ Pool Configuration. htm
j mkEnabl ed = true
initialSize = 5
maxActive = 50

mnldle =5
mexldle = 25
maxWait = 10000

maxAge = 10 * 60000

ti neBet weenEvi cti onRunsM | lis = 5000
m nEvictableldl eTineMIlis = 60000
val i dati onQuery = "SELECT 1"

val i dati onQueryTi neout = 3

val i dationl nterval = 15000
testOnBorrow = true

http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html

testWileldle = true
testOnReturn = fal se
i gnor eExcepti onOnPreLoad = true
/1 http://tontat.apache. org/tontat-7.0-doc/jdbc-pool.htm #IJDBC_ i nterceptors
jdbclnterceptors = "Connecti onSt at e; St at enent Cache(max=200) "
def aul t Transacti onl sol ati on = java. sql . Connecti on. TRANSACTI ON_READ _COWM TTED // safe defaul t
Il controls for |eaked connections
abandonWhenPer cent ageFul | = 100 // settings are active only when pool is full
renpveAbandonedTi neout = 120
renoveAbandoned = true
/1 use JMX console to change this setting at runtine
| ogAbandoned = false // causes stacktrace recording overhead, use only for debugging
/1 JDBC driver properties
Il Mysqgl as exanple
dbProperties {
/Il Mysqgl specific driver properties
/1 http://dev.nysqgl.com doc/ connector-j/en/connector-j-reference-configuration-properties.htmn
/1 1et Tontat JDBC Pool handle reconnecting
aut oReconnect =f al se
/1 truncation behaviour
j dbcConpl i ant Truncat i on=f al se
/1 mysqgl O-date conversion
zer oDat eTi meBehavi or =' convert ToNul | *
/1 Tontat JDBC Pool's StatementCache is used instead, so disable nysqgl driver's cache
cachePrepSt nt s=f al se
cacheCal | abl eSt nt s=f al se
/1 Tontat JDBC Pool's StatemnentFinalizer keeps track
dont TrackOpenResour ces=t r ue
/1 performance optim zation: reduce nunber of SQLExceptions thrown in nysql driver code
hol dResul t sOpenCQver St at enent G ose=t r ue
/1 enable MySQ. query cache - using server prep stnts will disable query caching
useServer PrepSt nt s=f al se
/1 metadata caching
cacheServer Confi gurati on=true
cacheResul t Set Met adat a=t r ue
nmet adat aCacheSi ze=100
/1 timeouts for TCP/IP
connect Ti meout =15000
socket Ti neout =120000
/1 timer tuning (disable)
mai nt ai nTi meSt at s=f al se
enabl eQuer yTi neout s=f al se
/1 misc tuning
noDat eti meStri ngSync=true

}

Moreon dbCreate

Hibernate can automatically create the database tables required for your domain model. Y ou
have some control over when and how it does this through the dbcr eat e property, which can
take these values:

® create - Drops the existing schema and creates the schema on startup, dropping existing
tables, indexes, etc. first.

® create-drop - Same as create, but also drops the tables when the application shuts down
cleanly.

® update - Creates missing tables and indexes, and updates the current schema without
dropping any tables or data. Note that this can’t properly handle many schema changeslike
column renames (you’ re left with the old column containing the existing data).

* validate - Makes no changes to your database. Compares the configuration with the existing
database schema and reports warnings.

® any other value - does nothing

Setting the dvar eat e Setting to "none” is recommended once your schemais relatively stable
and definitely when your application and database are deployed in production. Database

changes are then managed through proper migrations, either with SQL scripts or amigration
tool like Flyway or Liguibase. The Database Migration plugin uses Liquibase.

4.4.1 DataSour ces and Environments

The previous example configuration assumes you want the same config for all
environments: production, test, development etc.

Grails DataSource definition is "environment aware", however, so you can do:

dat aSour ce {
pool ed = true
driverd assName = "com nysql . jdbc. Driver”
di al ect = org. hibernate. di al ect. \y\SQL5I nnoDBDi al ect
/| other common settings here

}

environments {
production {
dat aSource {
url = "jdbc:nysql://liveip.comliveDb"
/1 other environnent-specific settings here

}
}
}

4.4.2 Automatic Database Migration

The dbar eat e property of the pat asour ce definition isimportant as it dictates what Grails
should do at runtime with regards to automatically generating the database tables from
GORM classes. The options are described in the DataSource section:

[]
create

°
create-drop

°
updat e

)
val i date

® novaue
In development mode dba eat e S by default set to "create-drop”, but at some point in
development (and certainly once you go to production) you' Il need to stop dropping and
re-creating the database every time you start up your server.
It's tempting to switch to updat e SO yOU retain existing data and only update the schema when
your code changes, but Hibernate’ s update support is very conservative. It won't make any
changes that could result in data loss, and doesn’t detect renamed columns or tables, so
you'll be left with the old one and will also have the new one.

Grails supports migrations with Liquibase or Flyway via plugins.

¢ Database Migration
* Fyway

https://flywaydb.org/
http://www.liquibase.org/
http://plugins.grails.org/plugin/grails/database-migration
http://plugins.grails.org/plugin/grails/database-migration
http://plugins.grails.org/plugin/saw303/org.grails.plugins%3Agrails-flyway

4.4.3 Transaction-awar e DataSour ce Proxy

The actual dat asour ce bean iswrapped in a transaction-aware proxy so you will be given the
connection that’s being used by the current transaction or Hibernate sessi on if oneis active.

If this were not the case, then retrieving a connection from the dat asour ce Would be a new
connection, and you wouldn’t be able to see changes that haven't been committed yet
(assuming you have a sensible transaction isolation setting, e.g. reap_cow TTeD OF better).

The "real" unproxied dat asour ce 1S Still available to you if you need access to it; its bean name
IS dat aSour ceUnpr oxi ed.

Y ou can access this bean like any other Spring bean, i.e. using dependency injection:

class MyService {
def dat aSour ceUnpr oxi ed

}

or by pulling it from the appl i cati oncont ext :

def dat aSour ceUnproxi ed = ctx. dat aSour ceUnpr oxi ed

4.4.4 Database Console

The H2 database console is a convenient feature of H2 that provides a web-based interface
to any database that you have a JDBC driver for, and it’s very useful to view the database
you're developing against. It’'s especially useful when running against an in-memory
database.

Y ou can access the console by navigating to http://localhost:8080/dbconsole in a browser.
The URI can be configured usi ng the grails. dbconsol e. url Root attributein appl i cati on. gr oovy
and defaultsto ' / dbconsol e .

The console is enabled by default in development mode and can be disabled or enabled in
other environments by usi ng the grai 1 s. dbconsol e. enabl ed attribute in applicati on. groovy. FOr
example, you could enable the console in production like this:

envi ronnents {
production {

grails.serverURL = "http://ww. changene. conf
grails.dbconsol e. enabl ed = true
grails.dbconsol e.url Root = '/adnm n/dbconsol e’

devel opnent {
grails.serverURL = "http://|ocal host: 8080/ ${ appNane}"

}
test {
grails.serverURL = "http://1ocal host: 8080/ ${ appNane}"

If you enable the console in production be sure to guard access to it using a trusted security
framework.

Configuration

http://h2database.com/html/quickstart.html#h2_console
http://localhost:8080/dbconsole

By default the console is configured for an H2 database which will work with the default
settings if you haven’t configured an external database - you just need to change the JDBC
URL t0j dbc: h2: mem devib. |If you' ve configured an external database (e.g. MySQL, Oracle,
etc.) then you can use the Saved Settings dropdown to choose a settings template and fill in
the url and username/password information from your appl i cati on. gr oovy.

4.4.5 M ultiple Datasour ces

By default all domain classes share a single pat asour ce and a single database, but you have
the option to partition your domain classes into two or more data sources.

Configuring Additional DataSour ces

The default pat asour ce configuration in grail s-app/ conf/application.ym looks somethlng like
this:

dat aSour ce:
pool ed: true
j mExport: true
driverd assName: org. h2. Driver
user name: sa
passwor d:

envi ronnent s:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc: h2: mem devDb; MWCC=TRUE; LOCK_TI MEOQUT=10000; DB_CLOSE_ON_EXI T=FALSE
test:
dat aSour ce:
dbCreate: update
url: jdbc:h2: mem t est Db; MWCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
producti on:
dat aSour ce:
dbCreate: update
url: jdbc: h2: prodDb; MCC=TRUE; LOCK_TI MEOUT=10000; DB_CLCOSE_ON_EXI T=FALSE
properties:
j mxEnabl ed: true
initial Size: 5

This configures a single pat asour ce With the Spring bean named dat asour ce. TO configure extra
data sources, add a dat asour ces block (at the top level, in an environment block, or both, just
like the standard pat asour ce definition) with a custom name. For example, this configuration
adds a second pat asour ce, Using MySQL in the devel opment environment and Oraclein
production:

dat aSour ce:
pool ed: true
j mKExport: true
driverd assName: org.h2. Driver
username: sa
passwor d:

dat aSour ces:
| ookup:
di al ect: org. hibernate. dial ect. MySQLI nnoDBDi al ect
driverd assName: com nysql.jdbc. Driver
user nanme: | ookup
password: secret
url: jdbc:nysql://Ilocal host/| ookup
dbCreate: update

envi ronnents:
devel opnent :
dat aSour ce:
dbCreate: create-drop
url: jdbc:h2: mem devDb; MWCC=TRUE; LOCK_TI MEQUT=10000; DB_CLOSE_ON_EXI T=FALSE
test:
dat aSour ce:
dbCreate: update

url: jdbc:h2: memtest Db; WCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
producti on:
dat aSour ce:
dbCreate: update
url: jdbc: h2: prodDb; MVCC=TRUE; LOCK_TI MEOUT=10000; DB_CLOSE_ON_EXI T=FALSE
properties:
j mEnabl ed: true
initial Size: 5
dat aSour ces:
| ookup:
di al ect: org.hibernate. dial ect. Oracl el0gDi al ect
driverd assName: oracle.jdbc.driver.OacleDriver
user nane: | ookup
password: secret
url: jdbc:oracle:thin: @ocal host: 1521: 1 ookup
dbCreate: update

Y ou can use the same or different databases as long as they’ re supported by Hibernate.

If you need to inject the 1 ookup datasource in a Grails artefact, you can do it like this:
Dat aSour ce dat aSour ce_| ookup

While defining multiple data sources, one of them must be named "dataSource”. Thisis
required because Grails determines which data source is the default by determining which
one is named "dataSource".

Configuring Domain Classes

If adomain class has No pat asour ce coOnfiguration, it defaults to the standard ' dat asour ce' . Set
the dat asour ce property in the mappi ng block to configure a non-default pat asour ce. FOr example,
if you want to use the zi pcode domain to use the ' 1 ookup' Dat asour ce, cONfigure it like this:

class Zi pCode {
String code

static mapping = {
dat asource ' | ookup'
}

}

A domain class can also use two or more data sources. Use the dat asour ces property with a
list of names to configure more than one, for example:

cl ass Zi pCode {

String code

static mapping = {
dat asources([' | ookup', 'auditing'])
}

}

If adomain class uses the default pat asour ce @and one or more others, use the special name
perauLT to indicate the default pat asour ce:
cl ass Zi pCode {

String code

static mapping = {
dat asources([' | ookup', ' DEFAULT'])
}

}

If adomain class uses all configured data sources, use the special value AL :

cl ass Zi pCode {

String code

static mapping = {
dat asource ' ALL'
}

}

Namespaces and GORM Methods

If adomain class uses more than one pat asour ce then you can use the namespace implied by
each pat asour ce NaMe to make GORM calls for a particular pat asour ce. FOr example, consider
this class which uses two data sources:

cl ass Zi pCode {
String code

static mapping = {
dat asources([' | ookup', 'auditing'])
}

}

The first pat asour ce Specified is the default when not using an explicit namespace, so in this
case we default to ' 1 ookup' . But you can call GORM methods on the 'auditing’ pat asour ce With
the pat asour ce NAMe, for example:

def zi pCode = Zi pCode. audi ti ng. get (42)

zi pCode. audi ti ng. save()

Asyou can see, you add the pat asour ce t0 the method call in both the static case and the
instance case.

Hibernate Mapped Domain Classes

Y ou can a'so partition annotated Java classes into separate datasources. Classes using the
default datasource are registered in grail s-app/ conf/ hi bernate. cfg. xm . 10 SpeCIfy that an
annotated class uses a non-default datasource, create a i bernate. cf g. xnt file for that
datasource with the file name prefixed with the datasource name.

For example if the sook Classisin the default datasource, you would register that in
grail s-app/ conf/ hi bernate. cfg.xm .

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<! DOCTYPE hi ber nat e-configuration PUBLIC '-//H bernate/Hi bernate Configuration DID 3.0//EN 'http://hibernate.sourcefor
<hi ber nat e-confi gurati on>
<sessi on-factory>
<mappi ng cl ass='org. exanpl e. Book' />
</ session-factory>
</ hi ber nat e- confi gurati on>

and if theLibrary classisin the"ds2" datasource, you would register that in
grail s-app/ conf/ds2_hi bernate. cfg.xnl .

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<! DOCTYPE hi ber nat e-configuration PUBLIC '-//H bernate/Hi bernate Configuration DID 3.0//EN 'http://hibernate.sourcefor
<hi ber nat e- confi gurati on>
<sessi on-factory>
<mappi ng cl ass='org. exanpl e. Li brary'/>
</ session-factory>
</ hi ber nat e- confi gurati on>

The process is the same for classes mapped with hbm.xml files - just list them in the
appropriate hibernate.cfg.xml file.

Services

Like Domain classes, by default Services use the default pat asour ce and
Pl at f or nifr ansact i onManager . 10 cOnfigure a Service to use a different pat asour ce, USe the static
dat asour ce property, for example:

cl ass DataService {
static datasource = "I ookup'
void someMet hod(...) {

}
}

A transactional service can only use a single pat asour ce, SO be sure to only make changes for
domain classes Whose pat asour ce 1S the same as the Service.

Note that the datasource specified in a service has no bearing on which datasources are used
for domain classes; that’ s determined by their declared datasources in the domain classes
themselves. It’s used to declare which transaction manager to use.

If you have aroo domain class in dat asource1 and asar domain classin dat asour ce2, if

WahooSer vi ce USES dat aSour ce1, @ SErvice method that saves anew roo and anew sar wWill only be
transactional for roo Since they share the same datasource. The transaction won't affect the
gar instance. If you want both to be transactional you’ d need to use two services and XA
datasources for two-phase commit, e.g. with the Atomikos plugin.

Transactions acr oss multiple data sour ces

Grails does not by default by default try to handle transactions that span multiple data
SOurces.

Y ou can enable Grailsto use the Best Effort 1PC pattern for handling transactions across
multiple datasources. To do so you must set the
grails.transaction. chai nedTransact i onManager Post Processor . enabl ed Setti ng tOtruein application.ym

grails:
transaction:
chai nedTr ansact i onManager Post Processor:
enabl ed: true

The Best Efforts 1PC pattern is fairly general but can fail in some circumstances that the
developer must be aware of.

Thisisanon-XA pattern that involves a synchronized single-phase commit of a number of
resources. Because the 2PC is not used, it can never be as safe as an XA transaction, but is
often good enough if the participants are aware of the compromises.

The basic ideais to delay the commit of all resources as late as possible in a transaction so
that the only thing that can go wrong is an infrastructure failure (not a business-processing
error). Systems that rely on Best Efforts 1PC reason that infrastructure failures are rare
enough that they can afford to take the risk in return for higher throughput. If
business-processing services are also designed to be idempotent, then little can go wrong in
practice.

The BE1PC implementation was added in Grails 2.3.6. . Before this change additional

https://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring-with-and-without-xa.html

datasources didn’t take part in transactionsinitiated in Grails. The transactions in additional
datasources were basically in auto commit mode. In some cases this might be the wanted
behavior. One reason might be performance: on the start of each new transaction, the
BE1PC transaction manager creates a new transaction to each datasource. It’'s possible to
leave an additional datasource out of the BE1PC transaction manager by setting transact i onal
= fal se iN the respective configuration block of the additional dataSource. Datasources with
readonly = true Will aso beleft out of the chained transaction manager (since 2.3.7).

By default, the BE1IPC implementation will add all beans implementing the Spring

Pl at f or milr ansact i onManager_ INterface to the chained BE1PC transaction manager. For example,
apossible avstransact i onvanager. bean in the Grails application context would be added to the
Grails BE1PC transaction manager’ s chain of transaction managers.

Y ou can exclude transaction manager beans from the BE1PC implementation with this
configuration option:

grails:
transaction:
chai nedTr ansact i onManager Post Processor:
enabl ed: true
bl ackl i stPattern: '.*'

The exclude matching is done on the name of the transaction manager bean. The transaction
managers of datasources with transactional = fal se Of readonly = true Will be skipped and
using this configuration option is not required in that case.

XA and Two-phase Commit

When the Best Efforts 1PC pattern isn’t suitable for handling transactions across multiple
transactional resources (not only datasources), there are several options available for adding
XA/2PC support to Grails applications.

The Spring transactions documentation contains information about integrating the JTA/XA

transaction manager of different application servers. In this case, you can configure a bean
with the nametransacti onManager manually iN resources. groovy Or resources. xni file.

4.5 Versioning

Detecting Versions at Runtime

Y ou can detect the application version using Grails support for application metadata using
the GrailsApplication class. For example within controllers there is an implicit
grailsApplication variable that can be used:

def version = grail sApplication. netadata. getApplicationVersion()

Y ou can retrieve the version of Grailsthat is running with:

def grailsVersion = grail sApplication. metadata.get G ailsVersion()

orthecaiisuwil class:

inport grails.util.GailsUil

def grailsVersion = GrailsUtil.grail sVersion

https://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/transaction/PlatformTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/jms/connection/JmsTransactionManager.html
http://docs.grails.org/3.3.8/api/grails/core/GrailsApplication.html

4.6 Dependency Resolution

Dependency resolution is handled by the Gradle build tool, all dependencies are defined in
the bui 1 d. gradi e file. Refer to the Gradle user guide for more information.

5TheCommand Line

Grails 3.0's command line system differs greatly from previous versions of Grails and
features APIs for invoking Gradle for build related tasks, as well as performing code
generation.

When you type:

grails <<conmmand nane>>

Grails searches the profile repository based on the profile of the current application. If the
profileisfor aweb application then commands are read from the web profile and the base
profile which it inherits from.

Since command behavior is profile specific the web profile may provide different behavior
for the run-app command then say a profile for running batch applications.

When you type the following command:

grails run-app
It will first search the application, and then the profile for commands:

PROIECT_HOME/ sr ¢/ mai n/ scri pt s/ run-app. gr oovy

°
profile]/conmands/run-app. groovy

°
profile]/conmands/run-app.ym

To get alist of all commands and some help about the available commands type:

grails help

which outputs usage instructions and the list of commands Grailsis aware of:

grai |l s <<environnment>>* <<target>> <<ar gunment s>>*'

| Exanpl es:
$ grails dev run-app
$ grails create-app books

| Avail abl e Commands (type grails help 'command-nane' for nore info):
| Command Nane Command Descri ption

cl ean Cleans a Grails application's conpiled sources
conpil e Conpiles a Grails application

Refer to the Command Line reference in the Quick Reference menu of the reference guide
for more information about individual commands

http://gradle.org
http://bintray.com/grails/profiles

Arguments

Thegrai s command isafront to agradi e invocation, because of this there can be unexpected
side-effects. For exampl e, when executi Ng grails -Dapp. foo=bar run-app the app. f 0o system
property won't be available to your application. Thisis because boot Run IN YOUr bui | d. gradi e
configures the system properties. To make this work you can simply append all

Syst em properties tO boot Run iN build. gradl e like:

boot Run{
systenProperties System properties // Please note not to use '=', because this will override all configured systenf

Or if you only want to pass through a limited set, you can prefix your system properties
using an arbitrary prefix and configure boot run like:

boot Run{
boot Run {
systenProperties Systemproperties.inject([:]){acc,item> itemkey.startsWth('boot."')?acc << [(item key. substr

}
}

In this example only system properties starting with oot . are passed through.

Application and VM arguments should be specified in boot run @s well.

boot Run{
boot Run {
j vmArgs(' - Dspri ng. out put. ansi . enabl ed=al ways')
args(' --app.foo=bar','--app.bar=foo') // Override the “app.foo’ and “app.bar’ config options (" grailsApplicatic

}
}

non-inter active mode

When you run a script manually and it prompts you for information, you can answer the
guestions and continue running the script. But when you run a script as part of an automated
process, for example a continuous integration build server, there’ s no way to "answer" the
guestions. So you can pass the - - non-i nteracti ve SWitch to the script command to tell Grails
to accept the default answer for any questions, for example whether to install amissing

plugin.
For example:

grails war --non-interactive

5.1 Interactive Mode

Interactive mode is afeature of the Grails command line which keeps the VM running and
allows for quicker execution of commands. To activate interactive mode type ‘grails’ at the
command line and then use TAB completion to get alist of commands:

bookstore — java — 74x22 s

bash java bash bash
Graeme-Rochers—iMac:bookstore graemerocher§ grails
| Enter a script name to run. Use TAB for completion:
grails> create-s

cregte-script create-service
grails> create-service bookstore.Book

If you need to open afile whilst within interactive mode you can use the open command
which will TAB complete file paths:

["NaNé) Terminal — java — 61x17

L} bash & bBash L) Dash tJ

g_r‘aeme -roch é'r'_s.-macbank-ﬁ-r'n: amazon gﬁﬁémemcheri grails
| Enter a script name to run. Use TAB for completion:
grails> open target/test-

test-classes test-reports
grails> open target/test-reports/html/index.html

Even better, the open command understands the logical aliases 'test-report' and 'dep-report’,
which will open the most recent test and dependency reports respectively. In other words, to
open the test report in abrowser sSimply execute open test-report. Y OU Can even open
multiplefil&s al ONCE: open test-report test/unit/MTests.groovy will open the HTML test report
in your browser and the west s. groovy Source filein your text editor.

TAB completion also works for class names after the creat e-* commands:

&, MNm Terminal — java — 62x17
graeme-rochers-macbook-pro:amazon graemerocher$ grails
| Enter a script name to run. Use TAB for completion:

grails> create-

create-app create-controller
create-domain-class create-filters
create-hibernate-cfg-xml create-integration-test
create-plugin create-scaffold-controller
create-script create-service
create-tag-lib create-unit-test

grails> create-s

create-scaffold-controller create-script
create-service
grails> create-service amazon.Book

If you need to run an external process whilst interactive mode is running you can do so by
starting the command with a!:

8 M Terminal — java — 62x17

grails> |l1s
application.properties
grails-app

lib

scripts

src

target

test

web-app
grails:-

Note that with ! (bang) commands, you get file path auto completion - ideal for external
commands that operate on the file system such as'ls, 'cat’, 'git', etc.

To exit interactive mode enter the exi t command. Note that if the Grails application has been
run with run-app Normally it will terminate when the interactive mode console exits because
the VM will be terminated. An exception to this would be if the application were running in
forked mode which means the application is running in a different VM. In that case the
application will be left running after the interactive mode console terminates. If you want to
exit interactive mode and stop an application that is running in forked mode, use the qui t
command. The quit command will stop the running application and then close interactive
mode.

5.2 Creating Custom Scripts

Y ou can create your own Command scripts by running the create-script command from the
root of your project. For example the following command will create a script called
src/ mai n/ scripts/hello-world.groovy.

grails create-script hello-world

In general Grails scripts should be used for scripting the Gradle based build system and
code generation. Scripts cannot load application classes and in fact should not since Gradle
isrequired to construct the application classpath.

See below for an example script that prints "Hello World":

description "Exanpl e description”, "grails hello-world"

println "Hello Wrld"

The descripti on method is used to define the output seen by grai1's hel p and to aid users of the
script. The following is a more complete example of providing a description taken from the
generate-al | command:

description("Generates a controller that perfornms CRUD operations and the associated views") {
usage "grails generate-all <<DOVAI N CLASS>>"
flag name: ' force', description:"Wether to overwite existing files"
argunent nane:' Donein C ass', description:'The name of the domain class'

}

Asyou can see this description profiles usage instructions, aflag and an argument. This
allows the command to be used as follows:

grails generate-all MyCdass --force
Template Generation

Plugins and applications that need to define template generation tasks can do so using
scripts. A example of thisisthe Scaffolding plugin which defines the generate-ai1 and
generate-control lers commands.

Every Grails script implements the TemplateRenderer interface which makesit trivial to
render templates to the users project workspace.

The following is an example of the create-script command written in Groovy:

description("Creates a Grails script") {
usage "grails create-script <<SCRI PT NAME>>"
argunent name:' Script Name', description:"The name of the script to create”
flag name: ' force', description:"Wether to overwite existing files"

}
def scriptName = args[0]
def nodel = nodel (scri pt Name)

def overwite = flag('force') ? true : false

render tenplate: tenplate('artifacts/Script.groovy'),
destination: file("src/main/scripts/${nodel.|owerCaseNane}. groovy"),
nodel : nodel ,
overwite: overwite

If ascript isdefined in aplugin or profile, the tenpi at e(st ringy Method will search for the
template in the application before using the template provided by your plugin or profile.
This allows users of your plugin or profile to customize what gets generated.

It is common to provide an easy way to allow users to copy the templates from your plugin
or profile. Here is one example on how the angular scaffolding copies templates.

tenpl ates("angul ar/**/*") . each { Resource r ->
String path = r.URL.toString().replaceAl (/" *?META-INF/, "src/ main")
if (path.endsWth('/")) {
nkdi r (pat h)
} else {
File to = new Fil e(path)
Springl QUtils.copy(r, to)
printIn("Copied ${r.filenane} to location ${to.canonical Path}")

}

The" model"

Executing the mdet method with aa ass/string/Fi 1 e/resour ce Will return an instance of Model.

http://docs.grails.org/3.3.8/api/org/grails/cli/profile/commands/templates/TemplateRenderer.html
http://docs.grails.org/3.3.8/api/grails/codegen/model/Model.html

The model contains several properties that can help you generate code.

Example:

def domain = nodel (com f oo. Bar)
domai n. cl assName == "FooBar"

domai n. ful | Name == "com f oo. FooBar "
donmi n. packageNane == "com f oo"
domai n. packagePat h == "conf f 00"
donmi n. propertyNane == "fooBar"
domai n. | ower CaseNane == "foo-bar"

In addition, an asmp Method is available to turn all of the propertiesinto a map to passto the
render Method.

Working with files

All scripts have access to methods on the FileSystemlinteraction class. It contains helpful
methods to copy, delete, and create files.

5.3 Creating Custom Commands

Y ou can create your own commands by running the create-command command from the
root of your project. For example the following command will create acommand called
grai | s-app/ commands/ Hel | oWor | dCormand.:

grails create-command Hel | oWorl d
Unlike scripts, commands cause the Grails environment to start and you have full access to
the application context and the runtime.

Since Grails 3.2.0, commands have similar abilities as scriptsin regards to retrieving
arguments, template generation, file access, and model building.

If you created acommand in a previous version of grails, you can update your command to
have those abilities by changing which trait you are implementing.

Commands created in Grails 3.1.x or lower implement the ApplicationCommand trait by
default which requires your command to implement the following method:

bool ean handl e(Execut i onCont ext executi onCont ext)

Commands created in Grails 3.2.0 or higher implement the Grail sA pplicationCommand trait
by default which requires your command to implement the following method:

bool ean handl e()

Commands defined thisway still have access to the execution context viaavariable called
"executionContext".

Custom commands can be executed using grails run-command:
grails run-command ny-exanpl e

Commands can also be executed using the runCommand gradle task. Note that the gradle
task uses camel Case:

http://docs.grails.org/3.3.8/api/org/grails/cli/profile/commands/io/FileSystemInteraction.html
http://docs.grails.org/latest/api/grails/dev/commands/ApplicationCommand.html
http://docs.grails.org/latest/api/grails/dev/commands/GrailsApplicationCommand.html

gradl e runConmmand - Par gs="ny- exanpl e"

If the grails server is a subproject (e.g., in aproject created with the angular profile), the
subproject command can still be invoked from the gradle wrapper in the parent project:

./ gradl ew server: runComand - Par gs="ny-exanpl e"

5.4 Re-using Grails scripts

Grails ships with alot of command line functionality out of the box that you may find useful
in your own scripts (See the command line reference in the reference guide for info on all
the commands).

Any script you create can invoke another Grails script simply by invoking a method:
test App()

The above will invoke the test - app cOmmand. Y ou can also pass arguments using the method
arguments:

test App(' --debug-jvn)
Invoking Gradle

Instead of invoking another Grails CLI command you can invoke Gradle directory using the
gradl e property.

gradl e. conpi | eGoovy()
Invoking Ant

Y ou can also invoke Ant tasks from scripts which can help if you need to writing code
generation and automation tasks:

ant. nkdir(dir:"path")

5.5 Building with Gradle

Grails 3.1 uses the Gradle Build System for build related tasks such as compilation, runnings
tests and producing binary distrubutions of your project. It is recommended to use Gradle
2.2 or above with Grails 3.1.

The build is defined by the bui 1 d. gradi e file which specifies the version of your project, the
dependencies of the project and the repositories where to find those dependencies (amongst
other things).

When you invoke the grai 1 s command the version of Gradle that ships with Grails 3.1
(currently 2.9) isinvoked by the grai 1 s process viathe Gradle Tooling API:

Equivalent to 'gradle classes'
$ grails conpile

Y ou can invoke Gradle directly using the gradi e command and use your own local version of
Gradle, however you will need Gradle 2.2 or above to work with Grails 3.0:

http://gradle.org
http://www.gradle.org/docs/current/userguide/embedding.html

$ gradl e assenble

5.5.1 Defining Dependencies with Gradle

Dependencies for your project are defined in the dependenci es block. In general you can
follow the Gradle documentation on dependency management to understand how to
configure additional dependencies.

The default dependencies for the "web" profile can be seen below:

dependenci es {
conpil e 'org. springfranework. boot: spring-boot-starter-Iogging'
conpi | e(' org. springfranmewor k. boot : spri ng-boot-starter-actuator')
conpi l e 'org. springfranmework. boot : spri ng- boot - aut oconf i gur e’
conpi l e "org. springfranmework. boot: spring-boot-starter-tontat’
conpile "org.grails:grails-dependencies'
conpile 'org.grails:grails-web-boot"

conpile 'org.grails.plugins: hibernate'
conpile 'org.grails. plugins:cache'
conpi l e 'org. hi bernat e: hi ber nat e- ehcache’

runtime 'org.grails.plugins:asset-pipeline'
runtinme 'org.grails.plugins:scaffolding

testConpile 'org.grails:grails-plugin-testing
testConpile 'org.grails.plugins: geb'

/1 Note: It is recommended to update to a nore robust driver (Chrone, Firefox etc.)
testRuntine 'org. sel eni umhqg. sel eni um sel eni um htm unit-driver:2.44.0'

console 'org.grails:grails-console'

}

Note that version numbers are not present in the majority of the dependencies. Thisis thanks
to the dependency management plugin which configures a Maven BOM that defines the
default dependency versions for certain commonly used dependencies and plugins:

dependencyManagenent {
inports {
mavenBom 'org.grails:grails-bom' + grailsVersion

appl yMavenExcl usi ons fal se

5.5.2Working with Gradle Tasks

As mentioned previously the grai 1 s command uses an embedded version of Gradle and
certain Grails commands that existed in previous versions of Grails map onto their Gradle
equivalents. The following table shows which Grails command invoke which Gradle task:

Grails Command Gradle Task
clean clean
compile classes

package assemble

http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

run-app bootRun

test-app test
test-app --integration integrationTest
war assemble

Y ou can invoke any of these Grails commands using their Gradle equivaentsif you prefer:

$ gradl e test

Note however that you will need to use aversion of Gradle compatible with Grails 3.1
(Gradle 2.2 or above). If you wish to invoke a Gradle task using the version of Gradle used
by Grails you can do so with the grai 1 s command:

$ grails gradle conpil eG oovy

However, it isrecommended you do this viainteractive mode, as it greatly speeds up
execution and provides TAB completion for the available Gradle tasks:

$ grails
| Enter a command nane to run. Use TAB for conpletion
grail s> gradl e conpil eG oovy

To find out what Gradle tasks are available without using interactive mode TAB completion
you can use the Gradle t asks task:

gradl e tasks

5.5.3 Grailspluginsfor Gradle

When you create a new project with the create-app command, adefault bui 1 d. gradi e iS
created. The default vui 1 d. gradi e cOnfigures the build with a set of Gradle plugins that allow
Gradleto build the Grails project:

apply plugin:"war"

apply plugin:"org.grails.grails-web"
apply plugin:"org.grails.grails-gsp"
apply plugin: "asset-pipeline"

The default plugins are as follows:
® war - The WAR plugin changes the packaging so that Gradle creates as WAR file from your
application. Y ou can comment out this plugin if you wish to create only arunnable JAR file
for standal one deployment.

® asset-pipeline - The asset pipeline plugin enables the compilation of static assets (JavaScript,
CSSetc.)

Many of these are built in plugins provided by Gradle or third party plugins. The Gradle

http://www.gradle.org/docs/current/userguide/war_plugin.html
https://grails.org/plugins.html#plugin/asset-pipeline

plugins that Grails provides are as follows:

® org.grails.grails-core - Theprimary Grails plugin for Gradle, included by all other plugins
and designed to operate with all profiles.

® org.grails.grails-gsp - The Grals GSP p| ugin adds precompilation of GSPfilesfor
production deployments.

® org.grails. grails-doc - A plugin for Gradle for using Grails 2.0’ s documentation engine.
® org.grails.grails-plugin- A pluginfor Gradle for building Grails plugins.

® org.grails.grails-plugin-publish-A plugln for pUb|IShI ng Grails plugl nsto the central
repository.

® org.grails.grails-profile - A plugin for use when creating Grails Profiles.

® org.grails.grails-profile-publish - A plugln for pUb'IShI ng Grails profilesto the centra
repository.

® org.grails. grails-web - The Grails Web gradle plugin configures Gradle to understand the
Grails conventions and directory structure.

6 Application Profiles

When you create a Grails application with the create-app command by default the "web"
profileis used:

grails create-app nyapp
Y ou can specify adifferent profile with the profile argument:
grails create-app nyapp --profil e=rest-api

Profiles encapsulate the project commands, templates and plugins that are designed to work
for agiven profile. The source for the profiles can be found on Github, whilst the profiles
themselves are published as JAR files to the Grails central repository.

To find out what profiles are available use the list-profiles command:
$ grails list-profiles

For more information on a particular profile use the profile-info command:
$ grails profile-info rest-api

Commands such asprofile-info OF Iist-profiles are not available when you invoke the
GrailsCLI inside agrails project.

Profile Repositories

By default Grails will resolve profiles from the Grails central repository. However, you can
override what repositories will be searched by specifying repositoriesin the

https://github.com/grails-profiles
https://repo.grails.org/grails/core/org/grails/profiles/

USER_HOME/ . grai | s/ settings. groovy file.

If you want profiles to be resolved with a custom repository in addition to the Grails central
repository, you must specify Grails central in the file as well:

grails {
profiles {
repositories {
nmyRepo {
url = "http://foo.conm repo"
snapshot sEnabl ed = true

}

grailsCentral {
url = "https://repo.grails.org/grails/core"
snapshot sEnabl ed = true

Grails uses Aether to resolve profiles, as a Gradle instance is not yet available when the
creat e-app COMManNd is executed. This means that you can also define repositories and more
advanced configuration (proxies, authentication etc.) in your user Hovel . ne/ set ti ngs. xmt file
if you wish.

It is also possible to store ssmple credentias for profile repositories directly in the
USER HOVE/ . grai | s/ settings. groovy file.

grails {
profiles {
repositories {
nyRepo {
url = "http://foo.comrepo”
snapshot sEnabl ed = true
username = "user"
password = "pass"
}
}
}

Profile Defaults

To create an application that uses a custom profile, you must specify the full artifact.

$ grails create-app nyapp --profile=com nyconpany.grails.profiles:nyprofile:1.0.0

To make this process easier, you can define defaults for a given profilein the
USER HOVE/ . grai | s/ settings. groovy file.

grails {
profiles {
nyprofile {
groupld =
version =

"com nyconpany. grails.profiles"
"1.0.0"
}

repositories {
}

}
}

With the default values specified, the command to create an application using that profile
becomes:

$ grails create-app nyapp --profile=nyprofile

6.1 Creating Profiles

The idea behind creating a new profileisthat you can setup a default set of commands and
pluginsthat aretailored to a particular technology or organisation.

To create anew profile you can use the create-profile command which will create a new
empty profile that extends the base profile:

$ grails create-profile nyconpany

The above command will create a new profile in the "mycompany" directory where the
command is executed. If you start interactive mode within the directory you will get a set of
commands for creating profiles:

$ cd nyconpany

$ grails

| Enter a command nane to run. Use TAB for conpletion:

grail s>

cr eat e- command creat e-creat or- command create-feature creat e- gener at or - conmand creat e-gradl e- conmand

The commands are as follows:

® create-command - Creates a new command that will be available from the Grails CLI when the
profileis used

® create-creator-comand - Creates acommand available to the CLI that renders atemplate
(Example: create-controller)

® create-generator-conmand - Creates a command available to the CLI that renders atemplate
based on a domain class (Example: generate-controller)

® create-feature - Creates afeature that can be used with this profile
® create-gradi e-command - Creates a CLI command that can invoke gradle
® create-tenpl ate - Creates atemplate that can be rendered by a command

To customize the dependencies for your profile you can specify additional dependenciesin
profile.ym .

Below isan exampleprofite ym file:

features:
defaul ts:
- hibernate
- asset-pipeline
bui I d:
pl ugi ns:
- org.grails.grails-web
excl udes:
- org.grails.grails-core
dependenci es:
conpi | e:
- "org.nyconpany: nypl ugin: 1. 0. 1"

With the above configuration in place you can publish the profile to your local repository
with gradle install .

$ gradle install

Your profile is now usable with the cr eat e- app cOMmand:

$ grails create-app nyapp --profile nyconpany

With the above command the application will be created with the "mycompany” profile
which includes an additional dependency on the "myplugin” plugin and also includes the
"hibernate" and "asset-pipeline" features (more on features later).

Note that if you customize the dependency coordinates of the profile (group, version etc.)
then you may need to use the fully qualified coordinates to create an application:

$ grails create-app nyapp --profile com nyconpany: myconpany: 1.0.1

6.2 Profile Inheritance

One profile can extend one or many different parent profiles. To define profile inheritance
you can modify the bui 1 d. gradi e Of @ profile and define the profile dependences. For example
typically you want to extend the vase profile:

dependenci es {
runtime project(':base')
}

By inheriting from a parent profile you get the following benefits:
® When the create-app command is executed the parent profile' s skeleton is copied first

® Dependencies and bui 1 d. gradi e iSMerged from the parent(s)

The application. yn fileis merged from the parent(s)
® CLI commands from the parent profile are inherited
® Featuresfrom the parent profile are inherited

To define the order of inheritance ensure that your dependencies are declared in the correct
order. For example:

dependenci es {
runtine project(':plugin')
runtime project(':web")

}

In the above snippet the skeleton from the "plugin® profileis copied first, followed by the
"web" profile. In addition, the "web" profile overrides commands from the "plugin” profile,
whilst if the dependency order was reversed the "plugin” profile would override the "web"
profile.

6.3 Publishing Profiles

Publishing Profilesto the Grails Central Repository

Any profile created with the create-profile command already comes configured with a
grails-profile-publish plugln defined in bui i d. gradl e:

apply plugin: "org.grails.grails-profile-publish”

To publish a profile using this plugin to the Grails central repository first upload the source
to Github (closed source profiles will not be accepted). Then register for an account on
Bintray and configure your keys as follows in the profil€’ Sbui 1 d. gradi e fil€:

grail sPublish {
user = ' YOUR USERNAME'
key = ' YOUR KEY'
gi thubSlug = 'your-repo/your-profile'
i cense = ' Apache-2.0'

The gi t hubsi ug @rgument should point to the path to your Github repository. For example if
your repository islocated at https.//github.com/foo/bar then your gi t hubsi ug ISt oo/ bar

With thisin place you can run gradi e publishprofile to publish your profile:

$ gradl e publishProfile

The profile will be uploaded to Bintray. Y ou can then go the Grails profiles repository and
request to have your profile included by clicking "Include My Package" button on Bintray’s
interface (you must be logged in to see this).

Publishing Profilesto an Internal Repository

The aforementioned grai I s-profiie-publi sh plugin configures Gradle’s Maven Publish plugin.
In order to publish to an internal repository all you need to do is define the repository in
bui I d. gradl e. FOr example:

publ i shing {
repositories {
maven {
credentials {
user narme "foo"
password "bar"

}

url "http://foo.conm repo”
}
}
}

Once configured you can publish your plugin with gradi e publ i sh:

$ gradl e publish

6.4 Under standing Profiles

A profileisasimple directory that containsaprofiie. yn file and directories containing the
"commands", "skeleton” and "templates’ defined by the profile. Example:

/ web
commands/
create-controller.yn
run-app. gr oovy
features/
asset - pi pel i ne/
skel et on
feature.yni
skel et on/
grails-app/
controllers/

bui | d. gradl e
tenpl ates/
artifacts/

https://github.com
http://bintray.com
https://github.com/foo/bar
https://github.com/grails-profiles
https://docs.gradle.org/current/userguide/publishing_maven.html

Control | er. groovy
profile.ym

The above example is a snippet of structure of the 'web' profile. The profiie. ym fileisused
to describe the profile and control how the build is configured.

Under standing the profile.yml descriptor
Theprofile.ym can contain the following child elements.
1) repositories

A list of Maven repositories to include in the generated build. Example:

repositories:
- "https://repo.grails.org/grails/core"

2) build.repositories

A list of Maven repositories to include in the buildscript section of the generated build.
Example:

bui I d:
repositories:
- "https://repo.grails.org/grails/core"

3) build.plugins

A list of Gradle plugins to configure in the generated build. Example:

bui I d:
pl ugi ns:
- eclipse
- idea
- org.grails.grails-core

4) build.excludes

A list of Gradle plugins to exclude from being inherited from the parent profile:

bui I d:
excl udes
- org.grails.grails-core

5) dependencies

A map of scopes and dependencies to configure. The excl udes SCOpe can be used to exclude
from the parent profile. Example:

dependenci es
excl udes
- "org.grails: hibernate: *"
bui | d:
- "org.grails:grails-gradl e-plugin: $grail sVersion"
conpi | e:
- "org.springfranework. boot: spring-boot-starter-1|oggi ng"
- "org.springfranework. boot: spring-boot - aut oconfi gure"

6) features.defaults

A default list of featuresto useif no explicit features are specified.

features:
defaul ts:
- hibernate
- asset-pipeline

7) skeleton.excludes

A list of filesto exclude from parent profile s skeletons (supports wildcards).

skel et on:
excl udes:
- gradl ew
- gradl ew. bat
- gradl e/

8) skeleton.parent.tar get

Thetarget folder that parent profile’ s skeleton should be copied into. This can be used to
create multi-project builds.

skel et on:
parent:
target: app

9) skeleton.binaryExtensions

Which file extensions should be copied from the profile as binary. Inherited and combined
from parent profiles.

skel et on:
bi nar yExt ensi ons: [exe, zip]

10) skeleton.executable

File patterns that should be marked as executable in the resulting application. Inherited and
combined from parent profiles. The patterns are parsed with Ant.

skel et on:
execut abl e:
- "**[gradl ew"
- "**[grail sw"

11) instructions

Text to be displayed to the user after the application is created

instructions: Here are some instructions
What happenswhen a profileisused?

When the creat e- app cOmmand runs it takes the skeleton of the parent profiles and copies the
skeletons into a new project structure.

Thebui 1 d. gradi e file is generated is result of obtaining all of the dependency information
defined intheprotite. ym filesand produces the required dependencies.

The command will a'so merge any bui 1 d. gradi e files defined within a profile and its parent
profiles.

The grail s-app/ conf/application.yn fileisaso merged into asingle YAML flletaklng into

https://ant.apache.org/manual/dirtasks.html#patterns

account the profile and all of the parent profiles.

6.5 Creating Profile Commands

A profile can define new commands that apply only to that profile using YAML or Groovy
scripts. Below is an example of the create-controller command defined in YAML.:

description:
- Creates a controller
- usage: 'create-controller <<controller nane>>'
- conpleter: org.grails.cli.interactive.conpleters. Donai nCl assConpl et er
- argunent: "Controller Name"
description: "The nane of the controller"
st eps:
- command: render
template: tenplates/artifacts/Controller.groovy
destination: grails-app/controllers/ artifact.package.path / artifact.nane Controller.groovy
- command: render
tenpl ate: tenplates/testing/ Controller.groovy
destination: src/test/groovy/ artifact.package.path’/ artifact.nanme Controll erSpec. groovy
- command: nkdir
| ocation: grails-app/views/ artifact.propertyNanme’

Commands defined in Y AML must define one or many steps. Each step isa command in
itself. The available step types are:

® ender - TO render atemplate to a given destination (as seen in the previous example)
® dir - TO make adirectory specified by the ocati on parameter

® oxecute - T0 execute acommand specified by the ci ass parameter. Must be a class that
implements the Command interface.

® gradie - TO execute one or many Gradle tasks specified by the tasks parameter.

For example to invoke a Gradle task, you can define the following YAML.:

description: Creates a WAR file for deploynent to a container (like Tontat)
m nArgunents: 0
usage: | war
st eps:
- comand: gradle
t asks:
- war

If you need more flexiblity than what the declarative Y AML approach provides you can
create Groovy script commands. Each Command script is extends from the
Groovy ScriptCommmand class and hence has all of the methods of that class available to it.

The following is an example of the create-script command written in Groovy:

description("Creates a Grails script") {
usage "grails create-script <<SCRI PT NAME>>"
argunent name:' Script Name', description:"The name of the script to create”
flag nane:'force', description:"Wether to overwite existing files"

}
def scriptName = args[0]
def nodel = nodel (scri pt Nane)

def overwite = flag('force') ? true : false

render tenplate: tenplate('artifacts/Script.groovy'),
destination: file("src/main/scripts/${nodel.|owerCaseNane}.groovy"),
nodel : nodel ,
overwite: overwite

http://docs.grails.org/3.3.8/api/org/grails/cli/profile/Command.html
http://docs.grails.org/3.3.8/api/org/grails/cli/profile/commands/script/GroovyScriptCommand.html

For more information on creating CLI commands see the section on creating custom scripts
in the Command Line section of the user guide.

6.6 Creating Profile Features

A Profilefeature is a shareable set of templates and dependencies that may span multiple
profiles. Typically you create a base profile that has multiple features and child profiles that
inherit from the parent and hence can use the features available from the parent.

To create afeature use the creat e- f eat ure cOmmand from the root directory of your profile:

$ grails create-feature nyfeature

Thiswill create anyfeaturesfeature. ynt file that looks like the following:

description: Description of the feature
custoni ze versions here

dependenci es:

conpile:

- "org.grails.plugins:nyplugin2:1.0"
#

As amore concrete example. The following isthe feat ure. yni file from the "asset-pipeline”
feature:

description: Adds Asset Pipeline to a Grails project
bui I d:
pl ugi ns:
- asset-pipeline
dependenci es:
bui | d:
- 'com bertram abs. pl ugi ns: asset - pi pel i ne-gradl e: 2. 5.0’
runtime:
- "org.grails.plugins: asset-pipel i ne"

The structure of afeatureis as follows;

FEATURE_DI R
feature.yni
skel et on/
grails-app/
conf/
application.yn
buil d. gradl e

The contents of the skeleton get copied into the application tree, whilst the app i cati on. ym
and vui 1 d. gradi e get merged with their respective counterparts in the profile by used.

With thefeature.ymt you can define additional dependencies. This allows usersto create
applications with optional features. For example:

$ grails create-app nyapp --profile nyprofile --features nyfeature, hibernate

The above example will create a new application using your new feature and the "hibernate"
feature.

7 Object Relational Mapping (GORM)

Domain classes are core to any business application. They hold state about business

processes and hopefully also implement behavior. They are linked together through
relationships; one-to-one, one-to-many, or many-to-many.

GORM is Grails abject relational mapping (ORM) implementation. Under the hood it uses
Hibernate (a very popular and flexible open source ORM solution) and thanks to the
dynamic nature of Groovy with its static and dynamic typing, along with the convention of
Grails, thereisfar less configuration involved in creating Grails domain classes.

Y ou can also write Grails domain classes in Java. See the section on Hibernate Integration
for how to write domain classes in Java but still use dynamic persistent methods. Below isa
preview of GORM in action:

def book = Book.findByTitle("Goovy in Action")
book
. addToAut hor s(nane: "Di erk Koeni g")

. addToAut hor s(nane: "Cui | | aume LaFor ge")
.save()

7.1 Quick Start Guide

A domain class can be created with the create-domain-class command:

grails create-donain-class helloworld. Person
If no package is specified with the create-domain-class script, Grails automatically uses the
application name as the package name.

Thiswill create a class at the location gr ai | s- app/ domai n/ hel | owor | d/ Per son. gr oovy such as the
one below:

package hel |l oworl d

class Person {

}

If you have the dbcr eat e property set to "update”, "create” or "create-drop” on your
DataSource, Grails will automatically generate/modify the database tables for you.

Y ou can customize the class by adding properties:

class Person {
String nane
I nteger age
Date lastVisit

}

Once you have adomain class try and manipulate it with the shell or console by typing:

grails console

Thisloads an interactive GUI where you can run Groovy commands with access to the
Spring ApplicationContext, GORM, etc.

7.1.1 Basic CRUD

Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create

To create adomain class use Map constructor to set its properties and call save:

def p = new Person(nane: "Fred", age: 40, lastVisit: new Date())
p. save()

The save method will persist your class to the database using the underlying Hibernate ORM
layer.

Read

Grails transparently adds an implicit i ¢ property to your domain class which you can use for
retrieval:

def p = Person.get(1)
assert 1 == p.id

This uses the get method that expects a database identifier to read the rerson 0bject back
from the database. Y ou can also |load an object in aread-only state by using the read
method:

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object
will not be persisted. Note that if you explicitly call the save method then the object is
placed back into aread-write state.

In addition, you can also load a proxy for an instance by using the |load method:

def p = Person. | oad(1)

This incurs no database access until a method other than getld() is called. Hibernate then
initializes the proxied instance, or throws an exception if no record is found for the specified
id.

Update

To update an instance, change some properties and then call save again:

def p = Person.get(1)
p. nane = "Bob"
p. save()

Delete

To delete an instance use the delete method:

def p = Person.get(1)
p. del et e()

7.2 Further Reading on GORM

For more information on using GORM see the dedicated documentation for the GORM
project.

http://gorm.grails.org/6.1.x/hibernate

8 TheWeb Layer

8.1 Controllers

A controller handles requests and creates or prepares the response. A controller can generate
the response directly or delegate to aview. To create a controller, smply create a class
whose name ends with control 1 er iNthe graiis-app/controliers directory (in asubdirectory if
it'sin apackage).

The default URL Mapping configuration ensures that the first part of your controller nameis

mapped to a URI and each action defined within your controller maps to URIs within the
controller name URI.

8.1.1 Understanding Controllersand Actions

Creating a controller

Controllers can be created with the create-controller or generate-controller command. For
example try running the following command from the root of a Grails project:

grails create-controller book

The command will create a controller at the location
grails-app/controllers/ myapp/ BookControl | er. groovy.

package nyapp

cl ass BookController {
def index() { }

}

where "myapp" will be the name of your application, the default package nameif oneisn’'t
specified.

Bookcont rol I er Dy default maps to the /book URI (relative to your application root).

Thecreate-control I er @Nd generate-control I er COMMands arejust for convenience and you
can just as easily create controllers using your favorite text editor or IDE

Creating Actions

A controller can have multiple public action methods; each one mapsto a URI:

cl ass BookController {
def list() {

/1 do controller logic
/'l create nodel

return nodel

This example maps to the /vook/ 11 st URI by default thanks to the property being named i st .
The Default Action
A controller has the concept of adefault URI that maps to the root URI of the controller, for
example / book fOr Bookcont rol 1er. The action that is called when the default URI is requested
isdictated by the following rules:

® |f thereisonly one action, it’s the default

® |f you have an action named i ndex, it' S the default

® Alternatively you can set it explicitly with the def aul t Acti on property:

static defaultAction = "list"

8.1.2 Controllersand Scopes
Available Scopes

Scopes are hash-like objects where you can store variables. The following scopes are
available to controllers:

* servletContext - Also known as application scope, this scope lets you share state across the
entire web application. The servletContext is an instance of ServletContext

® gession - The session allows associating state with a given user and typically uses cookies to
associate a session with a client. The session object is an instance of HttpSession

® request - The request object alows the storage of objects for the current request only. The
request object is an instance of HitpServletRequest

® params - Mutable map of incoming request query string or POST parameters
¢ flash - Seebelow
Accessing Scopes

Scopes can be accessed using the variable names above in combination with Groovy’ s array
index operator, even on classes provided by the Servlet API such as the HttpServletRequest:

cl ass BookController {

def find() {
def findBy = parans["findBy"]
def appContext = request["foo0"]
def | oggedUser = session["l| ogged_user"]

}
}

Y ou can also access values within scopes using the de-reference operator, making the syntax
even more clear:

cl ass BookController {

def find() {
def findBy = parans.findBy
def appContext = request.foo

def | oggedUser = session. | ogged_user

https://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html

}
}

Thisis one of the waysthat Grails unifies access to the different scopes.
Using Flash Scope

Grails supports the concept of flash scope as atemporary store to make attributes available
for this request and the next request only. Afterwards the attributes are cleared. Thisis
useful for setting a message directly before redirecting, for example:

def delete() {
def b = Book. get(parans.id)
if ('b) {
flash. message = "User not found for id ${parans.id}"
redirect(action:list)

. Il remaining code

}

When the del et e action is requested, the nessage Value will be in scope and can be used to
display an information message. It will be removed from the t1 ash scope after this second
request.

Note that the attribute name can be anything you want, and the values are often strings used
to display messages, but can be any object type.

Scoped Controllers

Newly created applications have the grai i s. control I ers. def aul t scope Property set to avalue of
"singleton” inappiication. yni . YOU may change this value to any of the supported scopes
listed below. If the property isnot assigned avalue at al, controllers will default to
"prototype" scope.

Supported controller scopes are:

® prototype (default) - A new controller will be created for each request (recommended for
actions as Closure properties)

® session - One controller is created for the scope of auser session

® singleton - Only oneinstance of the controller ever exists (recommended for actions as
methods)

To enable one of the scopes, add a static scope property to your class with one of the valid
scope values listed above, for example

static scope = "singleton”

Y ou can define the default Strategy in appl i cation.ymn with the grails.controllers. def aul t Scope
key, for example:

grails:
controllers:
def aul t Scope: singl eton

Use scoped controllers wisely. For instance, we don’t recommend having any propertiesin
a singleton-scoped controller since they will be shared for all requests.

8.1.3 Modelsand Views

Returning the M odel

A model isaMap that the view uses when rendering. The keys within that Map correspond
to variable names accessible by the view. There are a couple of ways to return amodel.
First, you can explicitly return aMap instance:

def show() {
[book: Book. get (parans.id)]
}

The above does not reflect what you should use with the scaffolding views - see the
scaffolding section for more details.

A more advanced approach is to return an instance of the Spring ModelAndView class:

i nport org.springframework. web. servl et. Mbdel AndVi ew

def index() {
/1 get sone books just for the index page, perhaps your favorites
def favoriteBooks = ...

/1 forward to the list viewto show t hem
return new Model AndVi ew("/book/list", [bookList : favoriteBooks])

}

One thing to bear in mind is that certain variable names can not be used in your model:

)
attributes

°
application

Currently, no error will be reported if you do use them, but thiswill hopefully changein a
future version of Grails.

Selecting the View

In both of the previous two examples there was no code that specified which view to render.
So how does Grails know which one to pick? The answer liesin the conventions. Grails will
look for aview at the location grail s-app/ vi ews/ book/ show. gsp for this show action:

cl ass BookController {
def show() {
[book: Book. get (parans.id)]
}

}

To render adifferent view, use the render method:

def show() {
def map = [book: Book. get (parans.id)]
render (view. "display", nodel: nap)

}

In this case Grails will attempt to render aview at the location

grai | s-app/ vi ews/ book/ di spl ay. gsp. NOtice that Grails automatically qualifies the view location
with the book directory of the grai i s-app/ vi ews directory. Thisis convenient, but to access
shared views, you use an absolute path instead of arelative one:

def show() {
def map = [book: Book. get (parans.id)]

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/ModelAndView.html

render (view "/shared/display", nodel: map)

}

In this case Grails will attempt to render aview at the location
grail s-app/vi ews/ shared/ di spl ay. gsp.

Grails also supports JSPs as views, so if aGSP isn’t found in the expected location but a JSP
is, it will be used instead.

Selecting Views For Namespaced Controllers

If acontroller defines a namespace for itself with the namespace property that will affect the
root directory in which Grails will ook for views which are specified with arelative path.
The default root directory for views rendered by a namespaced controller is

grail s-app/ vi ews/ <namespace name>/ <control | er name>/. If the view is not found in the namespaced
directory then Grails will fallback to looking for the view in the non-namespaced directory.

See the example below.

cl ass ReportingController {
stati c nanmespace = 'business’

def humanResources() {
/1 This will render grails-app/vi ews/business/reporting/ humanResources. gsp
/1 if it exists.

/1 1f grails-app/views/business/reporting/humanResources. gsp does not
/1 exist the fallback will be grails-app/views/reporting/humanResources. gsp.

/1l The namespaced GSP wi || take precedence over the non-nanmespaced GSP.

[nunber O Enpl oyees: 9]

def account sReceivable() {
/1 This will render grails-app/views/business/reporting/ nunberCrunch. gsp
/1 if it exists.

/1 1f grails-app/views/business/reporting/nunmberCrunch. gsp does not
/1 exist the fallback will be grails-app/views/reporting/ nunberCrunch. gsp.

/1 The namespaced GSP wi || take precedence over the non-namespaced GSP.
render view 'nunberCrunch', nodel: [nunberOf Enpl oyees: 13]

}
Rendering a Response

Sometimesit’s easier (for example with Ajax applications) to render snippets of text or code
to the response directly from the controller. For this, the highly flexible render method can be
used:

render "Hello World!"

The above code writes the text "Hello World!" to the response. Other examples include:

/'l wite sone markup
render {
for (b in books) {
div(id: b.id, b.title)
}

}

/1 render a specific view
render (vi ew. 'show)

/1 render a tenplate for each itemin a collection
render (tenplate: 'book_tenplate', collection: Book.list())

/1 render sone text with encoding and content type
render (text: "<xm >some xm </xnl >", contentType: "text/xm ", encoding: "UTF-8")

If you plan on using Groovy’ s var kupsui | der t0 generate HTML for use with the r ender
method be careful of naming clashes between HTML elements and Grails tags, for example:

i mport groovy. xm . Mar kupBui | der

def login() {
def witer = new StringWiter()
def builder = new MarkupBuil der(witer)
builder.htm {
head {
title "Log in'
}
body {
hl ' Hello'
form{

}

}

def html = witer.toString()
render htm

}

Thiswill actually call the form tag (which will return some text that will be ignored by the
Mar kupBui | der). TO correctly output a <t orm €lement, use the following:

def login() {
...
body {
hl ' Hello'
buil der.form {

8.1.4 Redirects and Chaining
Redirects

Actions can be redirected using the redirect controller method:

class OverviewController {

def login() {}

def find() {
if (!session.user)
redirect(action: 'login')
return
}
}

}

Internally the redirect method uses the HttpServletResponse object’ S sendredi rect method.
Theredirect method expects one of :

® The name of an action (and controller name if the redirect isn’t to an action in the current
controller):

/Il Also redirects to the index action in the hone controller
redirect(controller: 'home', action: 'index')

® A URI for aresource relative the application context path:

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html

// Redirect to an explicit URI
redirect(uri: "/login. htm™")

®* Or afull URL:

/'l Redirect to a URL
redirect(url: "http://grails.org")

® A domain class instance:

/! Redirect to the domain instance
Book book = ... // obtain a domain instance
redi rect book

In the above example Grails will construct alink using the domain classi 4 (if present).

Parameters can optionally be passed from one action to the next using the params argument of
the method:

redirect (action: 'nyaction', parans: [nmyparam "nyval ue"])

These parameters are made available through the params dynamic property that accesses
request parameters. If a parameter is specified with the same name as arequest parameter,
the request parameter is overridden and the controller parameter is used.

Since the parans Object isaMap, you can use it to pass the current request parameters from
one action to the next:

redirect (action: "next", params: parans)

Finally, you can also include a fragment in the target URI:

redirect(controller: "test", action: "show', fragment: "profile")

which will (depending on the URL mappings) redirect to something like
"Imyappltest/show#profile”.

Chaining

Actions can also be chained. Chaining allows the model to be retained from one action to
the next. For example calling therirst action in this action:

cl ass Exanpl eChai nControl ler {

def first() {
chai n(action: second, nodel: [one: 1])

def second () {
chain(action: third, nmodel: [two: 2])
}

def third() {
[three: 3])
}

}
results in the modd!:

[one: 1, two: 2, three: 3]

The model can be accessed in subsequent controller actions in the chain using the chai nmdel

map. This dynamic property only exists in actions following the call to the chai n method:

class ChainController {

def nextlnChain() {
def nodel = chai nvbdel . mnyModel

}
}

Like theredi rect method you can also pass parameters to the chai n method:
chain(action: "actionl", nodel: [one: 1], parans: [nyparam "paranl"])

The chain method uses the HT TP session and hence should only be used if your
application is stateful.

8.1.5 Data Binding

Databinding isthe act of "binding" incoming request parameters onto the properties of an
object or an entire graph of objects. Data binding should deal with all necessary type
conversion since request parameters, which are typically delivered by aform submission,
are always strings whilst the properties of a Groovy or Java object may well not be.

Map Based Binding

The data binder is capable of converting and assigning valuesin a Map to properties of an
object. The binder will associate entries in the Map to properties of the object using the keys
in the Map that have values which correspond to property names on the object. The
following code demonstrates the basics:

grail s-app/domain/Person.groovy

class Person {
String firstNane
String | ast Name
I nt eger age

}
def bindingMap = [firstName: 'Peter', |lastNane: 'Gabriel', age: 63]

def person = new Person(bi ndi nghvap)

assert person.firstName == 'Peter’
assert person.|lastNane == ' Gabriel’
assert person.age == 63

To update properties of adomain object you may assign a Map to the properties property of
the domain class:
def bindingMap = [firstName: 'Peter', lastNane: 'Gabriel', age: 63]

def person = Person. get (soneld)
person. properties = bi ndi ngvap

assert person.firstName == 'Peter’
assert person.lastNane == 'Gabriel’
assert person.age == 63

The binder can populate afull graph of objects using Maps of Maps.

class Person {
String firstNanme
String | ast Name
I nteger age
Addr ess honeAddr ess

cl ass Address {
String county
String country

}
def bindingMap = [firstName: 'Peter', lastNane: 'Gabriel', age: 63, honeAddress: [county: 'Surrey', country: 'England']

def person = new Person(bi ndi nghvap)

assert person.firstName == 'Peter’

assert person.|lastNane == ' Gabriel’

assert person.age == 63

assert person. honeAddress. county == 'Surrey’
assert person. honeAddress. country == ' Engl and’

Binding To Collections And M aps

The data binder can populate and update Collections and Maps. The following code shows a
simple example of populating avi st of objectsin adomain class:

class Band {
String nane
static hasMany = [al burms: Al buni
Li st al buns

}

class Al bum {
String title
I nteger nunber O Tracks
}
def bindingMap = [nane: 'Cenesis',
"al buns[0]': [title: 'Foxtrot', nunber O Tracks: 6],
"albuns[1]': [title: 'Nursery Cryne', nunberOf Tracks: 7]]

def band = new Band(bi ndi ngMap)

assert band.name == ' Cenesis'

assert band. al buns. size() == 2

assert band. al buns[0].title == 'Foxtrot"'
assert band. al buns[0] . nunber Of Tracks == 6
assert band. al buns[1].title == 'Nursery Cryne'
assert band. al buns[1] . nunber Of Tracks == 7

That code would work in the same way if ai buns Were an array instead of avist.

Note that when binding to a set the structure of the vap being bound to the set isthe same as
that of amap being bound to avist but since aset is unordered, the indexes don’'t necessarily
correspond to the order of elementsin the set . In the code example above, if al burs Were a set
instead of aList, the vi ndi ngvap could l0ok exactly the same but 'Foxtrot' might be the first
album in the set or it might be the second. When updating existing elementsin a set the map
being assigned to the set must havei ¢ elementsin it which represent the element in the set
being updated, as in the following example:

/* * The value of the indexes 0 and 1 in albuns[0] and al buns[1] are arbitrary * values that can be anything as |ong as
def bindingMap = ["al buns[0]': [id: 9, title: 'The Lanb Lies Down On Broadway']
"albuns[1]': [id: 4, title: "Selling England By The Pound']]

def band = Band. get (sonmeBandlI d)

/* * This will find the Albumin albuns that has an id of 9 and will set its title * to 'The Lanb Lies Down On Broadway
band. properties = bi ndi ngMap

When binding to a mp the structure of the binding wp is the same as the structure of a map
used for binding to aList or aset and the index inside of square brackets corresponds to the
key in the map being bound to. See the following code:

class Al bum {
String title
static hasMany = [players: Player]
Map pl ayers

class Player {
String nane

}

def bindingMap = [title: 'The Lanb Lies Down On Broadway',
'players[guitar]': [name: 'Steve Hackett'],
'players[vocal s]': [nane: 'Peter Gabriel'],
' pl ayers[keyboards]': [nane: 'Tony Banks']]

def al bum = new Al bun{ bi ndi nghvap)

assert albumtitle == 'The Lanb Lies Down On Broadway'
assert al bum pl ayers. size() == 3

assert al bum pl ayers. guitar.nane == ' Steve Hackett'
assert al bum pl ayers.vocal s. nane == ' Peter Gabriel'’
assert al bum pl ayers. keyboards. nane == ' Tony Banks'

When updating an existing mp, if the key specified in the binding vp does not exist in the vap
being bound to then a new value will be created and added to the wap with the specified key
asin the following example:

def bindingMap = [title: 'The Lanb Lies Down On Broadway',

"players[guitar]': [nane: 'Steve Hackett'],
' players[vocal s]': [name: 'Peter Gabriel'],
' pl ayers[keyboards]': [nane: 'Tony Banks']]

def al bum = new Al bun{ bi ndi ngMap)

assert albumtitle == 'The Lanb Lies Down On Broadway'
assert al bum pl ayers. size() == 3

assert al bum pl ayers. guitar.nane == ' Steve Hackett'
assert al bum pl ayers.vocal s. nane == 'Peter Gabriel"’
assert al bum pl ayers. keyboards. name == 'Tony Banks'

def updat edBi ndi ngMap = [' players[drums]': [name: 'Phil Collins'],
' pl ayers[keyboards]': [nane: 'Anthony George Banks']]

al bum properti es = updat edBi ndi ngMap

assert albumtitle == 'The Lanb Lies Down On Broadway'

assert al bum pl ayers.size() == 4

assert al bum pl ayers. guitar.nanme == ' Steve Hackett'

assert al bum pl ayers. vocal s. nane == ' Peter Gabriel'’

assert al bum pl ayers. keyboards. nane == ' Ant hony George Banks'
assert al bum pl ayers. drums. nane == ' Phil Collins'

Binding Request Data to the M odel

The params object that is available in a controller has special behavior that helps convert
dotted request parameter names into nested Maps that the data binder can work with. For
example, if arequest includes request parameters named per son. homeAddr ess. count ry and
person. honeAddr ess. city with values 'USA' and 'St. Louis respectively, par ans would include
entries like these:

[person: [honeAddress: [country: '"USA', city: "St. Louis']]]

There are two ways to bind request parameters onto the properties of adomain class. The
first involves using adomain classes Map constructor:

def save() {
def b = new Book(parans)
b. save()

The data binding happens within the code new Book(par ams) . By passing the params object to
the domain class constructor Grails automatically recognizes that you are trying to bind
from request parameters. So if we had an incoming request like:

/ book/ save?titl| e=The%20St and&aut hor =St ephen%20Ki ng

Thenthetitie and aut hor request parameters would automatically be set on the domain class.
Y ou can use the properties property to perform data binding onto an existing instance:

def save() {
def b = Book. get(parans.id)
b. properties = parans
b. save()

This has the same effect as using the implicit constructor.

When binding an empty String (a String with no charactersin it, not even spaces), the data
binder will convert the empty String to null. This simplifies the most common case where
the intent isto treat an empty form field as having the value null since thereisn’t away to
actually submit anull as arequest parameter. When this behavior is not desirable the
application may assign the value directly.

The mass property binding mechanism will by default automatically trim all Strings at
binding time. To disable this behavior set the grai i s. dat abi ndi ng. t ri nst ri ngs property to false

in grail s-app/ conf/application. groovy.

/1 the default value is true
grails.databinding.trinsStrings = fal se

...

The mass property binding mechanism will by default automatically convert all empty
Strings to null at binding time. To disable this behavior set the
grai | s. dat abi ndi ng. convert Enpt ySt ri ngsToNul | property to fasein

grail s-app/ conf/application.groovy.

/1 the default value is true
grail s. databi ndi ng. convert EnptyStringsToNull = fal se

...

The order of eventsis that the String trimming happens and then null conversion happens so
if trinstri ngs iStrue and convert Enpt ySt ri ngsToNul | iStrue, not only will empty Strings be
converted to null but also blank Strings. A blank String is any String such that the tri)
method returns an empty String.

These forms of data binding in Grails are very convenient, but also indiscriminate. In other
words, they will bind all non-transient, typed instance properties of the target object,
including ones that you may not want bound. Just because the form in your Ul doesn’t
submit all the properties, an attacker can still send malign dataviaaraw HTTP request.
Fortunately, Grails a'so makes it easy to protect against such attacks - see the section titled
"Data Binding and Security concerns' for more information.

Data binding and Single-ended Associations

If you have a one-t o- one OF many-t o- one @ssOCiation you can use Grails data binding capability
to update these relationships too. For example if you have an incoming request such as:

/ book/ save?aut hor. i d=20

Grailswill automatically detect the .i ¢ suffix on the request parameter and look up the aut hor
instance for the given id when doing data binding such as:

def b = new Book(parans)

An association property can be set to nul1 by passing the literal string "null”. For example:

/ book/ save?aut hor . i d=nul
Data Binding and Many-ended Associations

If you have a one-to-many or many-to-many association there are different techniques for
data binding depending of the association type.

If you have a set based association (the default for anaswany) then the ssmplest way to
populate an association isto send alist of identifiers. For example consider the usage of
<g: sel ect > below:

<g: sel ect nane="books"
frome" ${Book. list()}"
size="5" multiple="yes" optionKey="id"
val ue="${ aut hor ?. books}" />

This produces a select box that lets you select multiple values. In this case if you submit the
form Grails will automatically use the identifiers from the select box to populate the books
association.

However, if you have a scenario where you want to update the properties of the associated
objects the this technique won’t work. Instead you use the subscript operator:

<g: textField name="books[O0].title" value="the Stand" />
<g: textFi el d name="books[1].title" value="the Shining" />

However, with set based association it is critical that you render the mark-up in the same
order that you plan to do the update in. Thisis because a set has no concept of order, so
although we're referring to nooks 0] and books| 1] it iS Not guaranteed that the order of the
association will be correct on the server side unless you apply some explicit sorting yourself.

Thisisnot aproblem if you use i st based associations, since avist has adefined order and
an index you can refer to. Thisisalso true of wp based associations.

Note also that if the association you are binding to has a size of two and you refer to an
element that is outside the size of association:

<g:textFi el d nane="books[O0].title" value="the Stand" />
<g: textField name="books[1].title" val ue="the Shining" />
<g:textFi el d name="books[2].title" val ue="Red Madder" />

Then Grails will automatically create a new instance for you at the defined position.

Y ou can bind existing instances of the associated typeto aList using the same .id Syntax as
you would use with a single-ended association. For example:

<g: sel ect nane="books[0].id" from="${bookList}"
val ue="${ aut hor ?. books[0] ?.id}" />

<g: sel ect name="books[1].id" from="${bookList}"
val ue="${aut hor ?. books[1] ?.id}" />

<g: sel ect nane="books[2].id" from="${bookList}"
val ue="${aut hor ?. books[2] ?.id}" />

Would allow individual entriesin the books List t0 be selected separately.

Entries at particular indexes can be removed in the same way too. For example:

<g: sel ect nanme="books[0].id"
frone"${Book.list()}"
val ue="${aut hor ?. books[0] ?.id}"
noSel ection="["null': ""]1"/>

Will render a select box that will remove the association at books[0] if the empty option is
chosen.

Binding to awp property works the same way except that the list index in the parameter
name is replaced by the map key:

<g: sel ect nanme="i nages[cover].id"
from="${I mage.list()}"
val ue="${book?. i mages[cover] ?.id}"
noSel ection="["null': ""]"/>

Thiswould bind the selected image into the map property i mges under akey of cover".

When binding to Maps, Arrays and Collections the data binder will automatically grow the
size of the collections as necessary.

The default limit to how large the binder will grow a collection is 256. If the data binder
encounters an entry that requires the collection be grown beyond that limit, the entry is
ignored. The limit may be configured by assigning avalue to the

grai | s. dat abi ndi ng. aut oGr owCol | ecti onLi ni t Property iN appl i cati on. groovy.

grail s-app/conf/application.groovy

/1 the default value is 256
grail s. dat abi ndi ng. aut oGrowCol | ectionLinit = 128

...
Data binding with Multiple domain classes
It is possible to bind data to multiple domain objects from the params object.

For example so you have an incoming request to:

/ book/ save?book. tit| e=The¥®20St and&aut hor . nane=St ephen%20Ki ng

You'll notice the difference with the above request is that each parameter has a prefix such
aSauthor. OF book. Which isused to isolate which parameters belong to which type. Grails
params Object islike a multi-dimensiona hash and you can index into it to isolate only a
subset of the parameters to bind.

def b = new Book(parans. book)

Notice how we use the prefix before the first dot of the book. tit1e parameter to isolate only
parameters below this level to bind. We could do the same with an aut hor domain class:

def a = new Aut hor (parans. aut hor)
Data Binding and Action Arguments

Controller action arguments are subject to request parameter data binding. There are 2
categories of controller action arguments. The first category is command objects. Complex
types are treated as command objects. See the Command Objects section of the user guide

for details. The other category is basic object types. Supported types are the 8 primitives,
their corresponding type wrappers and java.lang.String. The default behavior isto map
request parameters to action arguments by name:

class AccountingController {

/1 account Nunber will be initialized with the value of parans. account Nunber
/1 accountType will be initialized with parans. account Type
def displ ayl nvoi ce(String account Nunber, int accountType) {

...

}
}

For primitive arguments and arguments which are instances of any of the primitive type
wrapper classes atype conversion has to be carried out before the request parameter value
can be bound to the action argument. The type conversion happens automatically. In a case
like the example shown above, the par ams. account Type request parameter has to be converted
toanint. If type conversion fails for any reason, the argument will have its default value per
normal Java behavior (null for type wrapper references, false for booleans and zero for
numbers) and a corresponding error will be added to the errors property of the defining
controller.

/accounti ng/ di spl ayl nvoi ce?account Nunber =B59786&account Type=bogusVal ue

Since "bogusValue" cannot be converted to type int, the value of accountType will be zero,
the controller'Serrors. haserrors() Will betrue, the controller’Serrors. error count Will be equal
to 1 and the controller’Serrors. get Fi el derror (* account Type') Will contain the corresponding
error.

If the argument name does not match the name of the request parameter then the
@rail s. web. Request Paramet er @NNotation may be applied to an argument to express the name of
the request parameter which should be bound to that argument:

inmport grails.web. Request Par anet er
cl ass AccountingController {
/1 mai nAccount Nunber will be initialized with the val ue of parans.account Nunber
/1 accountType will be initialized with parans.account Type
def displ ayl nvoi ce(@Request Par anet er (' account Nunber') String mai nAccount Nunmber, int accountType) {
...
}

}

Data binding and type conversion errors

Sometimes when performing data binding it is not possible to convert a particular String into
aparticular target type. Thisresultsin atype conversion error. Grails will retain type
conversion errors inside the errors property of a Grails domain class. For example:

cl ass Book {

URL publ i sher URL

Here we have adomain class sook that usesthej ava. net. urL class to represent URLSs. Given
an incoming request such as:

/ book/ save?publ i sher URL=a- bad- ur |

it isnot possible to bind the string a- bad-ur1 t0 the pubi i sher URL property as a type mismatch
error occurs. You can check for these like this:

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

def b = new Book(parans)

if (b.hasErrors()) {
println "The value ${b.errors.getFi el dError (' publisherURL").rejectedValue}" +
" is not a valid URL!'"

}

Although we have not yet covered error codes (for more information see the section on
validation), for type conversion errors you would want a message from the

grai | s-app/ i 18n/ messages. properti es file to use for the error. Y ou can use a generic error
message handler such as:

typeM smat ch. j ava. net. URL=The field {0} is not a valid URL

Or amore specific one:

typeM snat ch. Book. publ i sher URL=The publisher URL you specified is not a valid URL
The BindUsing Annotation

The BindUsing annotation may be used to define a custom binding mechanism for a
particular field in aclass. Any time data binding is being applied to the field the closure
value of the annotation will be invoked with 2 arguments. The first argument is the object
that data binding is being applied to and the second argument is DataBindingSource which
isthe data source for the data binding. The value returned from the closure will be bound to
the property. The following example would result in the upper case version of the nare value
in the source being applied to the nare field during data binding.

i mport grails. dat abi ndi ng. Bi ndUsi ng

cl ass Soned ass {
@i ndUsi ng({obj, source ->

//source is DataSourceBinding which is simlar to a Map
//and defines getAt operation but source.name cannot be used here.
/11n order to get name from source use getAt instead as shown bel ow.

source[' nanme'] ?. t oUpper Case()

})

String name

}

Note that data binding is only possible when the name of the request parameter matches
with the field name in the class. Here, name from request parameters matches with nane from

Soned ass.

The BindUsing annotation may be used to define a custom binding mechanism for all of the
fields on a particular class. When the annotation is applied to a class, the value assigned to
the annotation should be a class which implements the BindingHel per interface. An instance
of that class will be used any time avalue is bound to a property in the class that this
annotation has been applied to.

@i ndUsi ng(Somed assWhi chl npl emrent sBi ndi ngHel per)
cl ass SoneC ass {

String soneProperty

I nteger soneQ her Property

}

The Bindlnitializer Annotation

The Bindlnitializer annotation may be used to initialize an associated field in aclassif itis
undefined. Unlike the BindUsing annotation, databinding will continue binding all nested
properties on this association.

http://docs.grails.org/3.3.8/api/grails/databinding/BindUsing.html
http://docs.grails.org/3.3.8/api/grails/databinding/DataBindingSource.html
http://docs.grails.org/3.3.8/api/grails/databinding/BindUsing.html
http://docs.grails.org/3.3.8/api/grails/databinding/BindingHelper.html
http://docs.grails.org/3.3.8/api/grails/databinding/BindInitializer.html
http://docs.grails.org/3.3.8/api/grails/databinding/BindUsing.html

inmport grails.databinding.Bindlnitializer
cl ass Account{}

class User {
Account account

/1 Bindlnitializer expects you to return a instance of the type

/1 where it's declared on. You can use source as a paraneter, in this case user.
@i ndlnitializer({user-> new Contact (account:user.account) })

Cont act contact

class Contact{
Account account
String firstNanme
}

@Bindinitializer only makes sense for associated entities, as per this use case.

Custom Data Converters

The binder will do alot of type conversion automatically. Some applications may want to
define their own mechanism for converting values and a simple way to do thisisto write a
class which implements ValueConverter and register an instance of that class asabean in
the Spring application context.

package com nyapp. converters

import grails. databinding. converters. Val ueConverter

[** * A custom converter which will convert String of the * form'city:state' into an Address object.

cl ass AddressVal ueConverter inplenments Val ueConverter {

bool ean canConvert (val ue) {
val ue instanceof String
}

def convert(val ue) {
def pieces = value.split(':")
new com nyapp. Address(city: pieces[0], state: pieces[1])

}

Cl ass<?> get Target Type() {
com nyapp. Addr ess
}

}

An instance of that class needs to be registered as a bean in the Spring application context.
The bean name is not important. All beans that implemented ValueConverter will be
automatically plugged in to the data binding process.

grail s-app/conf/spring/resources.groovy

beans = {
addressConverter com nyapp. converters. AddressVal ueConverter
...

}

class Person {
String firstNanme
Addr ess honmeAddr ess

}

cl ass Address {
String city
String state

}

def person = new Person()
person. properties = [firstName: 'Jeff', homeAddress: "O Fallon: M ssouri"]

assert person.firstNane == 'Jeff’
assert person. honmeAddress.city = "O Fal |l on"
assert person. honeAddress.state = ' M ssouri'

Date Formats For Data Binding

*/

http://docs.grails.org/3.3.8/api/grails/databinding/converters/ValueConverter.html

A custom date format may be specified to be used when binding a String to a Date value by
applying the BindingFormat annotation to a Date field.

i nport grails.databindi ng. Bi ndi ngFor mat

class Person {
@i ndi ngFor mat (' MMildyyyy')
Date birthDate

}

A global setting may be configured in appi i cati on. groovy t0 define date formats which will be
used application wide when binding to Date.

grail s-app/conf/application.groovy

grails. dat abi ndi ng. dateFormats = [' MMddyyyy', 'yyyy-Mvdd HH mmss. S, "yyyy-Mvdd' T' hh: mm ss' Z' "]

The formats specified in grai 1 s. dat abi ndi ng. dat eFor mat s Will be attempted in the order in which
they areincluded in the List. If aproperty is marked with @i ndi ngror mat , the @i ndi ngror mat
will take precedence over the values specified in grai i s. dat abi ndi ng. dat eFor mat s.

The formats configured by default are:

°
yyyy- Mt dd HH: mm ss. S

°
yyyy- MA dd’ T' hh: nm ss’ Z'

)
yyyy-Midd HH. nmss. S z

°
yyyy- MM dd’ T' HH: mm ss. SSSX

Custom Formatted Converters

Y ou may supply your own handler for the BindingFormat annotation by writing a class
which implements the FormattedV alueConverter interface and registering an instance of that
class as a bean in the Spring application context. Below is an example of atrivial custom
String formatter that might convert the case of a String based on the value assigned to the
BindingFormat annotation.

package com nyapp.converters
i nport grails.databinding. converters. FornattedVal ueConverter

class FormattedStringVal ueConverter inplenments FormattedVal ueConverter {
def convert(value, String fornmat) {
i f (" UPPERCASE == format) {
val ue = val ue. t oUpper Case()
} else if(' LOANERCASE == format) {
val ue = val ue. t oLower Case()
}

val ue

Cl ass get Target Type() {
Il specifies the type to which this converter may be applied
String
}
}

An instance of that class needs to be registered as a bean in the Spring application context.
The bean name is not important. All beans that implemented FormattedV alueConverter will
be automatically plugged in to the data binding process.

http://docs.grails.org/3.3.8/api/grails/databinding/BindingFormat.html
http://docs.grails.org/3.3.8/api/grails/databinding/BindingFormat.html
http://docs.grails.org/3.3.8/api/grails/databinding/converters/FormattedValueConverter.html

grails-app/conf/spring/resources.groovy

beans = {
formattedStringConverter com nmyapp. converters. FornattedStri ngVal ueConverter
1o

}

With that in place the si ndi ngror mat @annotation may be applied to String fields to inform the
data binder to take advantage of the custom converter.

i mport grails. dat abi ndi ng. Bi ndi ngFor nat

class Person {
@Bi ndi ngFor mat (' UPPERCASE')
String soneUpper CaseString

@Bi ndi ngFor mat (' LOAERCASE')
String soneLower CaseString

String someQtherString
}

L ocalized Binding Formats

The Bi ndi ngror mat @nnotation supports localized format strings by using the optional code
attribute. If avalue is assigned to the code attribute that value will be used as the message
code to retrieve the binding format string from the messagesour ce bean in the Spring
application context and that lookup will be localized.

i mport grails. dat abi ndi ng. Bi ndi ngFor nat

class Person {
@i ndi ngFor mat (code=' dat e. f or mats. bi rt hdays')
Date birthDate

}

grails-app/conf/i1l8n/nessages. properties
date. formats. bi rt hdays=Mwidyyyy

grails-app/conf/i1l8n/nessages_es.properties
date. formats. bi rt hdays=ddMWyyy

Structured Data Binding Editors

A structured data binding editor is a helper class which can bind structured request
parameters to a property. The common use case for structured binding isbinding to a pate
object which might be constructed from several smaller pieces of information contained in
several request parameters with names like bi rt hday_nont h, bi rt hday_dat e and bi rt hday_year. The
structured editor would retrieve al of those individual pieces of information and use them to
construct apate.

The framework provides a structured editor for binding to oat e Objects. An application may
register its own structured editors for whatever types are appropriate. Consider the following
classes:

src/main/groovy/databinding/Gadget.groovy
package dat abi ndi ng
cl ass Gadget {

Shape expandedShape
Shape conpressedShape

}
src/main/groovy/databinding/Shape.groovy

package dat abi ndi ng

cl ass Shape {

int area

}

A cadget has 2 snape fields. A shape has an area property. It may be that the application wants
to accept request parameters like wi dt h and nei ght and use those to calculate the ar ea Of & shape
at binding time. A structured binding editor iswell suited for that.

The way to register a structured editor with the data binding processis to add an instance of
the grails.databinding. TypedStructuredBindingEditor interface to the Spring application
context. The easiest way to implement the Typedst r uct ur edsi ndi ngedi t or interfaceis to extend
the org.grails.databinding.converters.AbstractStructuredBindingEditor abstract class and
override the get propert yval ue method as shown below:

src/main/groovy/databinding/converters/StructuredShapeEditor.groovy
package dat abi ndi ng. converters

i mport dat abi ndi ng. Shape

import org.grails. databinding.converters. Abstract StructuredBi ndi ngEdi t or
class StructuredShapeEditor extends Abstract StructuredBi ndi ngEdi t or <Shape> {

publ i ¢ Shape get PropertyVal ue(Map val ues) {
Il retrieve the individual values fromthe Map
def width = values.width as int
def hei ght = val ues. hei ght as int

/1 use the values to calculate the area of the Shape
def area = width * height

/] create and return a Shape with the appropriate area
new Shape(area: area)

}
An instance of that class needs to be registered with the Spring application context:

grails-app/conf/spring/resources.groovy

beans = {
shapeEdi t or dat abi ndi ng. converters. Struct uredShapeEdi t or
1o

}

When the data binder binds to an instance of the cadget classit will check to seeif there are
request parameters with names conpr essedShape and expandedShape which have avalue of
"struct”" and if they do exist, that will trigger the use of the st ruct ur edshapetdi tor. The
individual components of the structure need to have parameter names of the form
propertyName_structuredElementName. In the case of the cadget Class above that would
mean that the conpr essedshape request parameter should have a value of "struct" and the

conpr essedShape_wi dt h @N0 conpr essedshape_hei ght parameters should have values which represent
the width and the height of the compressed shape. Similarly, the expandedshape request
parameter should have avalue of "struct” and the expandedShape_wi dt h and expandedShape_hei ght
parameters should have values which represent the width and the height of the expanded
Shape.

grails-app/controllers/demo/DemoController.groovy
cl ass DenpController {

def createGadget (Gadget gadget) {
/* | demo/ cr eat eGadget ?expandedShape=st r uct &xpandedShape_wi dt h=80&expandedShape_hei ght =30 &conpr essedShape=strL

/1 with the request paraneters shown above gadget.expandedShape. area woul d be 2400
/1 and gadget. conpressedShape. area woul d be 30

http://docs.grails.org/3.3.8/api/grails/databinding/TypedStructuredBindingEditor.html
http://docs.grails.org/3.3.8/api/org/grails/databinding/converters/AbstractStructuredDateBindingEditor.html

...
}

Typically the request parameters with "struct” as their value would be represented by hidden
form fields.

Data Binding Event Listeners

The DataBindingL istener interface provides a mechanism for listenersto be notified of data
binding events. The interface looks like this:

package grails. databi ndi ng. events;
inport grails.databinding.errors. Bi ndingError;

/** * Alistener which will be notified of events generated during data binding. * * @uthor Jeff Brown * @ince 3.0 *
public interface DataBindi ngLi stener {

[** * @eturn true if the listener is interested in events for the specified type. */
bool ean supports(Cd ass<?> clazz);

/** * Called when data binding is about to start. * * @aramtarget The object data binding is being i nposed upon *
Bool ean bef or eBi ndi ng(Cbj ect target, Object errors);

/** * Called when data binding is about to inposed on a property * * @aramtarget The object data binding is beinc
Bool ean bef oreBi ndi ng(bj ect target, String propertyName, Cbject value, Cbject errors);

/** * Called after data binding has been inposed on a property * * @aramtarget The object data binding is being i
voi d afterBinding(Object target, String propertyNane, Object errors);

/** * Called after data binding has finished. * * @aramtarget The object data binding is being inposed upon * @sz
voi d afterBinding(Object target, Object errors);

/** * Called when an error occurs binding to a property * @aramerror encapsul ates informati on about the binding €
voi d bi ndi ngError(Bindingérror error, Cbject errors);

}

Any bean in the Spring application context which implements that interface will
automatically be registered with the data binder. The DataBindingListenerAdapter class
implements the pat asi ndi ngLi st ener iNnterface and provides default implementations for all of
the methods in the interface so this classis well suited for subclassing so your listener class
only needs to provide implementations for the methods your listener isinterested in.

Using The Data Binder Directly

There are situations where an application may want to use the data binder directly. For
example, to do binding in a Service on some arbitrary object which isnot adomain class.
The following will not work because the properties property isread only.

src/main/groovy/bindingdemo/Widget.groovy
package bi ndi ngdeno
cl ass Wdget {

String nane

I nteger size

}
grails-app/services/bindingdemo/WidgetService.groovy

package bi ndi ngdeno
cl ass Wdget Service {
def updat eW dget (W dget w dget, Map data) {
/1 this will throw an exception because

/] properties is read-only
wi dget . properties = data

http://docs.grails.org/3.3.8/api/grails/databinding/events/DataBindingListener.html
http://docs.grails.org/3.3.8/api/grails/databinding/events/DataBindingListenerAdapter.html

An instance of the data binder is in the Spring application context with a bean name of
grai | svebDat aBi nder . That bean implements the DataBinder interface. The following code
demonstrates using the data binder directly.

grails-app/services/bindingdmeo/WidgetService
package bi ndi ngdeno

import grails. databindi ng. Si npl eMapDat aBi ndi ngSour ce
cl ass Wdget Service {

/1 this bean will be autowired into the service
def grail sWebDat aBi nder

def updat eW dget (W dget w dget, Map data) {
grai | swebDat aBi nder. bi nd wi dget, data as Si npl eMapDat aBi ndi ngSour ce
}

}

See the DataBinder documentation for more information about overloaded versions of the
bi nd Method.

Data Binding and Security Concerns

When batch updating properties from request parameters you need to be careful not to allow
clients to bind malicious data to domain classes and be persisted in the database. Y ou can
limit what properties are bound to a given domain class using the subscript operator:

def p = Person.get(1)

p.properties['firstNane','lastNane'] = parans

In this case only thefirstname and 1 ast name properties will be bound.

Another way to do thisisisto use Command Objects as the target of data binding instead of
domain classes. Alternatively thereis also the flexible bindData method.

The bi ndoat a Mmethod allows the same data binding capability, but to arbitrary objects:

def p = new Person()
bi ndDat a(p, parans)

The bi ndpat a Mmethod also lets you exclude certain parameters that you don’t want updated:

def p = new Person()
bi ndDat a(p, parans, [exclude: 'dateOFBirth'])

Or include only certain properties:

def p = new Person()
bi ndDat a(p, parans, [include: ['firstNane', 'lastNane']])

If an empty List isprovided asavaluefor theinci ude parameter then all fields will be
subject to binding if they are not explicitly excluded.

The bindable constraint can be used to globally prevent data binding for certain properties.

8.1.6 Responding with JSON

Using the respond method to output JSON

http://docs.grails.org/3.3.8/api/grails/databinding/DataBinder.html
http://docs.grails.org/3.3.8/api/grails/databinding/DataBinder.html

The respond method is the preferred way to return JSON and integrates with Content
Negotiation and JSON Views.

The respond method provides content negotiation strategies to intelligently produce an
appropriate response for the given client.

For example given the following controller and action:

grails-app/controllers/example/BookController.groovy
package exanpl e

cl ass BookController {
def index() {
respond Book. list()
}
}

The respona method will take the followings steps:
1. If the client accept header specifies a mediatype (for example appi i cati on/j son) USe that
2. If thefile extension of the URI (for example / books. j son) includes aformat defined in the
grails.mme. types property of grail s-app/ conf/application.yni USE the mediatype defined in the

configuration

The respond method will then ook for an appriopriate Renderer for the object and the
calculated media type from the RendererRegistry.

Grailsincludes a number of pre-configured renderer implementations that will produce
default representations of JSON responses for the argument passed to respond. FOr example
going to the/ book. j son URI will produce JSON such as:

[
{id:1
{id:2
]

,"title":"The Stand"},
,"title":"Shining"}

Controlling the Priority of Media Types

By default if you define a controller there is no priority in terms of which format is sent
back to the client and Grails assumes you wish to serve HTML as a response type.

However if your application is primarily an API, then you can specify the priorty using the
responseFor mat s Property:

grails-app/controllers/example/BookController.groovy
package exanpl e
cl ass BookController {

static responseFormats = ['json', 'htm']

def index() {
respond Book. list()
}

}

In the above example Grails will respond by default with j son if the mediatype to respond
with cannot be calculated from the accept header or file extension.

Using Viewsto Output JSON Responses

http://views.grails.org
http://docs.grails.org/3.3.8/api/grails/rest/render/Renderer.html
http://docs.grails.org/3.3.8/api/grails/rest/render/RendererRegistry.html

If you define aview (either a GSP or a JSON View) then Grailswill render the view when
using the respond method by calculating a model from the argument passed to r espond.

For example, in the previous listing, if you were to define grai 1 s- app/ vi ews! i ndex. gson and

grail s-app/ vi ews/ i ndex. gsp VIEWS, these would be used if the client requested appl i cation/json OF
text/htmt mediatypes respectively. Thus alowing you to define a single backend capible of
serving responses to aweb browser or representing your application’s API.

When rendering the view, Grails will calculate amodel to pass to the view based on the type
of the value passed to the r espond Mmethod.

The following table summarizes this convention:

Example Argument Type Calculated Model Variable
respond Book. list() java.util.List bookLi st

respond([]) java.util.List enpt yLi st

respond Book. get (1) exanpl e. Book book

respond([1,2]) java.util.List i nt egerLi st

respond([1,2] as Set) java. util. Set i nt eger Set

respond([1,2] as Integer[]) I nteger[] i nteger Array

Using this convention you can reference the argument passed to r espond from within your
view:

grails-app/views/book/index.gson

@i el d Li st <Book> bookList =[]

json bookList, { Book book ->
title book.title
}

You will notice that if sook. 1ist() returnsan empty list then the model variable nameis
translated to empt yLi st . Thisis by design and you should provide a default value in the view
if no model variable is specified, such asthe i st in the example above:

grail s-app/views/book/index.gson

/1 defaults to an enpty list
@i el d Li st <Book> bookList =[]

There are cases where you may wish to be more explicit and control the name of the model

http://views.grails.org

variable. For example if you have a domain inheritance hierarchy whereacall to1ist() my
return different child classes relying on automatic calculation may not be reliable.

In this case you should pass the model directly using respond and a map argument:
respond bookLi st: Book.list()

When responding with any kind of mixed argument typesin a collection, always use an
explicit model name.

If you simply wish to augment the cal culated model then you can do so by passing a model
argument:

respond Book.list(), [nodel: [bookCount: Book.count()]]

The above example will produce a model like [bookLi st : books, bookCount : t ot al Books] , Where
the calculated model is combined with the model passed in the mdel argument.

Using the render method to output JSON

The render method can also be used to output JSON, but should only be used for ssmple
cases that don’'t warrant the creation of a JSON view:

def list() {
def results = Book.list()

render (content Type: "application/json") {
books(results) { Book b ->
title b.title
}

}
}

In this case the result would be something along the lines of :

[{"title":"The Stand"},

] {"title":"Shining"}
This technique for rendering JSON may be ok for very simple responses, but in general
you should favour the use of JSON Views and use the view layer rather than embedding

logic in your application.

The same dangers with naming conflicts described above for XML also apply to JSON
building.

8.1.7 Moreon JSONBuilder

The previous section on XML and JSON responses covered simplistic examples of
rendering XML and JSON responses. Whilst the XML builder used by Grailsis the standard
XmlSlurper found in Groovy.

For JSON, since Grails 3.1, Grails uses Groovy’ s StreamingJsonBuilder by default and you
can refer to the Groovy documentation and StreamingJsonBuilder APl documentation on
how to useit.

http://groovy-lang.org/processing-xml.html#_xmlparser_and_xmlslurper
http://docs.groovy-lang.org/latest/html/documentation/core-domain-specific-languages.html#_streamingjsonbuilder
http://docs.groovy-lang.org/latest/html/documentation/core-domain-specific-languages.html#_streamingjsonbuilder
http://docs.groovy-lang.org/latest/html/gapi/groovy/json/StreamingJsonBuilder.html

8.1.8 Responding with XML

8.1.9 Uploading Files

Programmatic File Uploads

Grails supports file uploads using Spring’ s MultipartHttpServletRequest interface. The first
step for file uploading is to create a multipart form like this:

Upl oad Form

<g: upl oadFor m act i on="upl oad" >
<input type="file" nane="nyFile" />
<i nput type="submt" />
</ g: upl oadFor n»

The upl oadFor mtag Conveniently adds the enct ype="nul tipart/formdata" attribute to the standard
<g: forne tag

There are then anumber of ways to handle the file upload. Oneisto work with the Spring
MultipartFile instance directly:

def upload() {
def f = request.getFile('nmyFile")

if (f.enpty) {
flash. message = 'file cannot be enpty'
render (vi ew. ' upl oadForm)
return

}

f.transferTo(new File('/sone/local/dir/nyfile.txt"))
response. sendError (200, 'Done')

}

Thisis convenient for doing transfers to other destinations and manipulating the file directly
as you can obtain an i nput streamand so on with the MultipartFile interface.

File Uploadsthrough Data Binding

File uploads can also be performed using data binding. Consider this 1 mage domain class:
class I mage {

byte[] nyFile

static constraints = {

/1 Limt upload file size to 2MB
nyFil e naxSi ze: 1024 * 1024 * 2

}

If you create an image using the parans Object in the constructor as in the example below,
Grailswill automatically bind the file's contents as abyte[] to the nyri1 e property:

def ing = new | mage(parans)

I’ simportant that you set the size or maxSize constraints, otherwise your database may be
created with asmall column size that can’t handle reasonably sized files. For example, both
H2 and MySQL default to a blob size of 255 bytesfor vyte[] properties.

It is also possible to set the contents of the file as a string by changing the type of the nyri i e
property on the image to a String type:

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/multipart/MultipartFile.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/multipart/MultipartFile.html

class I mage {
String nyFile

Increase Upload Max File Size

Grails default size for file uploads is 128000 (~128KB). When this limit is exceeded you' Il
see the following exception:

org. springframework. web. mul tipart.MiltipartException: Could not parse nultipart servlet request; nested exception is je&
Y ou can configure the limit in your appt i cation. yni as follows:

grails-app/conf/application.yml
grails:
controllers:
upl oad:

maxFi | eSi ze: 2000000
maxRequest Si ze: 2000000

maxFi | esi ze = The maximum size allowed for uploaded files.
maxRequest Si ze = The maximum size allowed for multipart/form-data requests.

Y ou should keep in mind OWA SP recommendations - Unrestricted File Upload

Limit the file size to amaximum value in order to prevent denial of service attacks.

These limits exist to prevent DoS attacks and to enforce overall application performance

8.1.10 Command Objects

Grails controllers support the concept of command objects. A command object is a class that
is used in conjunction with data binding, usually to allow validation of datathat may not fit
into an existing domain class.

A classisonly considered to be a command object when it is used as a parameter of an
action.

Declaring Command Objects

Command object classes are defined just like any other class.

cl ass Logi nCommand i npl ements grails.validation. Validateable {
String usernane
String password

static constraints = {
user name(bl ank: false, mnSize: 6)
passwor d(bl ank: false, mnSize: 6)

}

In this example, the command object class implements the vai i dat eabi e trait. The val i dat eabl
trait allows the definition of Constraints just like in domain classes. If the command object
is defined in the same source file as the controller that is using it, Grails will automatically
make it val i dat eabl e. It iSNOt required that command object classes be validateable.

https://www.owasp.org/index.php/Unrestricted_File_Upload

By default, all val i dat eabl e Object properties which are not instances of j ava. utii. col I ection OF
java.util.Map dl€nul l abl e: fal se. |nStanCeSijava. util.Collection andj ava.util.Mp default to
nullable: true. If yOU Want avali dat eabl e that hasnui 1 abl e: true properties by default, you can
gpecify this by defining a def au t Nl 1 abl e Mmethod in the class:

cl ass Aut hor Sear chConmand i npl enents grails.validation.Validateable {
String name
I nteger age

static bool ean defaul tNull abl e() {
true
}
}

In this example, both name and age Will alow null values during validation.
Using Command Objects

To use command objects, controller actions may optionally specify any number of command
object parameters. The parameter types must be supplied so that Grails knows what objects
to create and initialize.

Before the controller action is executed Grails will automatically create an instance of the
command object class and popul ate its properties by binding the request parameters. If the
command object class is marked with vai i dat eabl e then the command object will be
validated. For example:

class LoginController {

def 1ogi n(Logi nCommand cnd) {
if (cnd.hasErrors()) {
redirect(action: 'loginForm)
return

}

/1 work with the command object data
}
}

If the command object’ s type isthat of adomain class and thereisan i ¢ request parameter
then instead of invoking the domain class constructor to create a new instance a call will be
made to the static get method on the domain class and the value of thei ¢ parameter will be
passed as an argument.

Whatever isreturned from that call to get iswhat will be passed into the controller action.
This meansthat if thereisan i« request parameter and no corresponding record isfound in
the database then the value of the command object will be nui 1. If an error occurs retrieving
the instance from the database then nui 1 Will be passed as an argument to the controller
action and an error will be added the controller’serrors property.

If the command object’ stype isadomain class and thereisno i ¢ request parameter or there
isanid request parameter and its value is empty then nuit will be passed into the controller
action unless the HTTP request method is "POST", in which case a new instance of the
domain class will be created by invoking the domain class constructor. For all of the cases
where the domain class instance is non-null, data binding is only performed if the HTTP
request method is"POST", "PUT" or "PATCH".

Command Objects And Request Parameter Names

Normally request parameter names will be mapped directly to property namesin the

command object. Nested parameter names may be used to bind down the object graph in an
intuitive way.

In the example below arequest parameter named nare Will be bound to the nare property of
the per son instance and a request parameter named address. ci ty Will be bound to thecity
property of the address property in the person.

class StoreController {
def buy(Person buyer) {
...
}

}

class Person {
String nane
Addr ess address

}

cl ass Address {
String city
}

A problem may ariseif acontroller action accepts multiple command objects which happen
to contain the same property name. Consider the following example.

class StoreController {
def buy(Person buyer, Product product) {
...
}

}

class Person {
String name
Addr ess address

}

cl ass Address {
String city
}

class Product {
String name
}

If there isarequest parameter named nare it iSN't clear if that should represent the name of
the product Or the name of the rerson. Another version of the problem can come up if a
controller action accepts 2 command objects of the same type as shown below.

class StoreController {
def buy(Person buyer, Person seller, Product product) {
...
}

}

class Person {
String name
Addr ess address

}

cl ass Address {
String city
}

class Product {
String name
}

To help deal with this the framework imposes special rules for mapping parameter names to
command object types. The command object data binding will treat all parameters that begin
with the controller action parameter name as belonging to the corresponding command
object.

For example, the product . name request parameter will be bound to the nane property in the
product @rgument, the buyer . name request parameter will be bound to the nane property in the
buyer @rgument the sel 1 er. address. ci ty request parameter will be bound to the city property of
the address property of the sei1er @argument, etc...

Command Objects and Dependency | njection

Command objects can participate in dependency injection. Thisisuseful if your command
object has some custom validation logic which uses a Grails service:

cl ass Logi nCommand i npl ements grails.validation. Validateable {
def | ogi nService

String usernane
String password

static constraints = {
usernanme validator: { val, obj ->
obj . I ogi nServi ce. canLogi n(obj . user nane, obj . password)
}

}
}

In this example the command object interacts with the 1 ogi nservi ce bean which isinjected by
name from the Spring app! i cati oncont ext .

Binding The Request Body To Command Objects

When arequest is made to a controller action which accepts a command object and the
request contains a body, Grails will attempt to parse the body of the request based on the
reguest content type and use the body to do data binding on the command object. See the
following example.

grails-app/controllers/bindingdemo/DemoController.groovy
package bi ndi ngdeno
class DempbController {

def createW dget (Wdget w) {
render "Name: ${w?.nane}, Size: ${w?.size}"
}

}

cl ass Wdget {
String nane
I nteger size

$ curl -H "Content-Type: application/json" -d '{"nanme":"Some Wdget","42"}' [size] |ocal host: 8080/ denv/ creat eW dget
Nanme: Sone Wdget, Size: 42

$ curl -H "Content-Type: application/xm" -d '<w dget><nane>Sone C her W dget </ name><si ze>2112</si ze></w dget>" | ocal hc
Nanme: Sone Other Wdget, Size: 2112

The request body will not be parsed under the following conditions:
® Therequest method is GET
® Therequest method isDELETE

® The content length is 0

Note that the body of the request is being parsed to make that work. Any attempt to read the
body of the request after that will fail since the corresponding input stream will be empty.
The controller action can either use acommand object or it can parse the body of the request
on itsown (either directly, or by referring to something like request.JSON), but cannot do
both.

grails-app/controllers/bindingdemo/DemoController.groovy
package bi ndi ngdeno
class DenpController {

def createWdget (Wdget w) {
/1 this will fail because it requires readi ng the body,
/1 which has already been read.
def json = request.JSON

...

}

Working with Lists of Command Objects

A common use case for command objects is a Command Object that contains a collection of
another:

class DempbController {

def creat eAut hor (Aut hor Command conmand) {
...

}

cl ass Aut hor Command {
String full Name
Li st <BookCommand> books

}

cl ass BookCommand {
String title
String isbn

}

On this example, we want to create an Author with multiple Books.

In order to make this work from the Ul layer, you can do the following in your GSP:

<g: f orm name="submi t - aut hor - books" controll er="dem" action="createAuthor">
<g: fi el dval ue name="ful | Nanre" val ue=""/>

<g: fiel dval ue name="books[0].title" value=""/>
<g: fi el dval ue nane="books[0].isbn" value=""/>

<g: fiel dval ue nane="books[1].title" value=""/>
<g:fiel dval ue name="books[1].isbn" val ue=""/>

</g:fornp

Thereis also support for JSON, so you can submit the following with correct databinding

"full Nane": "G aene Rocher",

"books": [{
"title": "The Definitive Guide to Gails",
"isbn": "1111-343455-1111"

"title": "The Definitive Guide to Gails 2",
"isbn": "1111-343455-1112"

8.1.11 Handling Duplicate Form Submissions

Grails has built-in support for handling duplicate form submissions using the " Synchronizer
Token Pattern”. To get started you define atoken on the form tag:

<g: form useToken="true" ...>

Then in your controller code you can use the withForm method to handle valid and invalid
requests:

wi t hForm {
/1 good request
}.invalidToken {
/1 bad request
}

If you only provide the withForm method and not the chained i nval i dtoken method then by
default Grailswill store the invalid token in ariash. i nval i dToken Variable and redirect the
request back to the original page. This can then be checked in the view:

<g:if test="${flash.invalidToken}">
Don't click the button tw ce!
</g:if>

The withForm tag makes use of the session and hence requires session affinity or clustered
sessionsif used in a cluster.

8.1.12 Simple Type Converters

Type Conversion Methods

If you prefer to avoid the overhead of data binding and simply want to convert incoming
parameters (typically Strings) into another more appropriate type the params object has a
number of convenience methods for each type:

def total = parans.int('total')

The above example usesthe i nt method, and there are also methods for bool ean, 1 ong, char,
short and so on. Each of these methods is null-safe and safe from any parsing errors, so you
don’'t have to perform any additional checks on the parameters.

Each of the conversion methods allows a default value to be passed as an optional second
argument. The default value will be returned if a corresponding entry cannot be found in the
map or if an error occurs during the conversion. Example:

def total = parans.int('total', 42)

These same type conversion methods are also available on the at 1 r s parameter of GSP tags.

Handling Multi Parameters

A common use case is dealing with multiple request parameters of the same name. For
example you could get a query string such as 2nane=Bob&name=Judy.

http://gsp.grails.org/latest/ref/Tags/form.html

In this case dealing with one parameter and dealing with many has different semantics since
Groovy’siteration mechanicsfor string iterate over each character. To avoid this problem
the params object provides aiist method that aways returnsalist:

for (name in params.list('nanme')) {
println name
}

8.1.13 Declarative Controller Exception Handling

Grails controllers support a simple mechanism for declarative exception handling. If a
controller declares a method that accepts a single argument and the argument typeis

j ava. |l ang. Excepti on O SOMe subclass of j ava. | ang. Excepti on, that method will be invoked any
time an action in that controller throws an exception of that type. See the following example.

grails-app/controllers/demo/DemoController.groovy
package deno
cl ass DenpController {

def soneAction() {

/1 do sonme work
}

def handl eSQLExcepti on(SQLException e) {
render ' A SQ.Exception Was Handl ed’

}

def handl eBat chUpdat eExcepti on(Bat chUpdat eExcepti on e) {
redirect controller: 'logging' , action: 'batchProblen

}

def handl eNurber For mat Except i on(Nunber For mat Exception nfe) {
[probl enDescription: A Nunber Was Invalid']

}

That controller will behave asif it were written something like this...

grails-app/controllers/demo/DemoController.groovy
package deno
class DenoController {

def soneAction() {
try {
/1 do some work
} catch (BatchUpdat eException e) {
return handl eBat chUpdat eExcepti on(e)
} catch (SQLException e) {
return handl eSQLException(e)
} catch (Nunber For mat Exception e) {
return handl eNunber For mat Excepti on(e)
}

def handl eSQLExcepti on(SQLException e) {
render ' A SQ.Exception Was Handl ed'

}

def handl eBat chUpdat eExcept i on(Bat chUpdat eException e) {
redirect controller: 'logging', action: 'batchProblem

}

def handl eNurber For mat Except i on(Nunber For mat Exception nfe) {
[probl enDescription: A Nunber Was Invalid']

}

The exception handler method names can be any valid method name. The name is not what
makes the method an exception handler, the excepti on @argument type is the important part.

The exception handler methods can do anything that a controller action can do including
invoki Ng render, redirect, returning amodel, etc.

One way to share exception handler methods across multiple controllersisto use
inheritance. Exception handler methods are inherited into subclasses so an application could
define the exception handlersin an abstract class that multiple controllers extend from.
Another way to share exception handler methods across multiple controllersis to use atrait,
as shown below...

src/main/groovy/com/demo/DatabaseExceptionHandl er.groovy
package com deno

trait DatabaseExcepti onHandl er {
def handl eSQLExcepti on(SQLException e) {
/1 handl e SQLException
}

def handl eBat chUpdat eExcepti on(Bat chUpdat eExcepti on e) {
/1 handl e Bat chUpdat eExcepti on

}
}

grails-app/controllers/com/demo/DemoController.groovy
package com deno
cl ass DenpController inplements DatabaseExceptionHandl er {

/1 all of the exception handl er nethods defined
/1 in DatabaseExceptionHandl er will be added to
/1 this class at conpile tine

}

Exception handler methods must be present at compile time. Specifically, exception handler
methods which are runtime metaprogrammed onto a controller class are not supported.

8.2 Groovy Server Pages

Groovy Servers Pages (or GSP for short) is Grails view technology. It is designed to be
familiar for users of technologies such as ASP and JSP, but to be far more flexible and
intuitive.

Although GSP can render any format, not just HTML, it is more designed around
rendering markup. If you are looking for away to simplify JSON responses take alook at
JSON Views.

GSPslivein the graiis-app/views directory and are typically rendered automatically (by
convention) or with the render method such as:

render (view. "index")

A GSPistypicaly amix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing this will be
covered in this document, the practice is strongly discouraged. Mixing mark-up and code
isabad thing and most GSP pages contain no code and needn’t do so.

A GSPtypicaly hasa"model" which isaset of variables that are used for view rendering.

http://gsp.grails.org

The model is passed to the GSP view from a controller. For example consider the following
controller action:

def show() {
[book: Book. get (parans.id)]
}

This action will look up aeook instance and create a model that contains akey called book.
This key can then be referenced within the GSP view using the name book:

${book.title}

Embedding data received from user input has the risk of making your application
vulnerable to an Cross Site Scripting (XSS) attack. Please read the documentation on XSS
prevention for information on how to prevent XSS attacks.

For more information on using GSP please refer to the dedicated GSP documentation.

8.3 URL Mappings

Throughout the documentation so far the convention used for URLSs has been the default of
Icontroller/action/id. However, this convention is not hard wired into Grails and isin fact
controlled by a URL Mappings class located at

grail s-app/controllers/ mypackage/ Ur | Mappi ngs. gr oovy.

The uri vappi ngs class contains a single property called mappi ngs that has been assigned a block
of code:

package mypackage

class Url Mappi ngs {
static mappings = {

}

8.3.1 Mapping to Controllersand Actions

To create asimple mapping simply use arelative URL as the method name and specify
named parameters for the controller and action to map to:

"/ product”(controller: "product", action: "list")

In this case we' ve mapped the URL /product to therist action of the product control 1 er . Omit
the action definition to map to the default action of the controller:

"/ product”(controller: "product")

An aternative syntax is to assign the controller and action to use within a block passed to
the method:

"/ product"” {
control l er = "product”
action = "list"

}

Which syntax you useislargely dependent on personal preference.

http://gsp.grails.org

If you have mappings that all fall under a particular path you can group mappings with the
group method:

group "/product", {
"/appl e"(controller:"product", id:"apple")
"/htc"(controller:"product”, id:"htc")

}

Y ou can also create nested group Url mappings:

group "/store", {
group "/product", {
"/$id"(controller:"product")
}

}

To rewrite one URI onto another explicit URI (rather than a controller/action pair) do
something like this:

"/hello"(uri: "/hello.dispatch")

Rewriting specific URIsis often useful when integrating with other frameworks.

8.3.2 Mapping to REST resources

Since Grails 2.3, it possible to create RESTful URL mappings that map onto controllers by
convention. The syntax to do so isas follows:

"/ books" (resources: ' book')

Y ou define a base URI and the name of the controller to map to using the resour ces
parameter. The above mapping will result in the following URLSs:

HTTP Method URI GrailsAction
GET /books index

GET /bookg/create create

POST /books save

GET /books/${ id} show

GET /books/${ id} /edit edit

PUT /books/¥{id} update

DELETE Ibooks/${id} delete

If you are not sure which mapping will be generated for your case just run the command
ur | - mappi ngs-report 1N your grails console. It will give you areally neat report for all the url

mappings.

If you wish to include or exclude any of the generated URL mappings you can do so with
the i ncl udes OF excl udes parameter, which accepts the name of the Grails action to include or
exclude:

"/ books" (resources: ' book', excludes:['delete', 'update'])
or

"/ books" (resources: ' book', includes:['index', 'show])
Explicit REST Mappings

Asof Grails 3.1, if you prefer not to rely on aresour ces mapping to define your mappings
then you can prefix any URL mapping with the HTTP method name (in lower case) to
indicate the HTTP method it applies to. The following URL mapping:

"/ books" (resources: ' book')

Is equivalent to:

get "/books"(controller:"book", action:"index")

get "/books/create"(controller:"book", action:"create")
post "/books"(controller:"book", action:"save")

get "/books/ $id"(controller:"book", action:"show')

get "/books/$id/edit"(controller:"book", action:"edit")
put "/books/$id"(controller:"book", action:"update")
del ete "/ books/$id"(controller:"book", action:"delete")

Notice how the HTTP method name is prefixed prior to each URL mapping definition.
Singleresour ces

A singleresource is aresource for which there is only one (possibly per user) in the system.
Y ou can create a single resource using the si ngi e parameter (as opposed to resour ces):

"/ book" (si ngl e:' book")

Thisresultsin the following URL mappings:

HTTP Method URI Grails Action
GET /book/create create

POST /book save

GET /book show

GET /book/edit edit

PUT /book update

DELETE /book delete

The main difference isthat theid is not included in the URL mapping.
Nested Resour ces

Y ou can nest resource mappings to generate child resources. For example:

"/ books" (resources: ' book') {
"/ aut hors" (resources: "aut hor")

}

The above will result in the following URL mappings:

HTTP Method URL GrailsAction
GET /books/${ booklId} /authors index

GET /books/${ bookld} /authors/create create

POST /books/${ bookl d} /authors save

GET /books/${ bookl d} /authors/${ id} show

GET /books/${ bookld} /authors/edit/${id} edit

PUT /books/${ bookl d} /authors/${ id} update
DELETE /books/${ bookl d} /authors/${ id} delete

Y ou can also nest regular URL mappings within a resource mapping:

"/ books" (resources: "book") {
"/ publisher"(controller:"publisher")
}

Thiswill result in the following URL being available:
HTTP Method URL GrailsAction

GET /books/${ bookld} /publisher index

To map aURI directly below aresource then use a collection block:

"/ books" (resources: "book") {
col lection {
"/ publisher"(controller:"publisher")

}

Thiswill result in the following URL being available (without the ID):
HTTP Method URL GrailsAction

GET /books/publisher index

Linking to RESTful Mappings

You can link to any URL mapping created with the g: 1i nk tag provided by Grails ssmply by
referencing the controller and action to link to:

<g:link controller="book" action="index">M Link</g:link>

As aconvenience you can also pass a domain instance to the resour ce attribute of the i nk tag:

<g:link resource="${book}">M Link</g:link>
Thiswill automatically produce the correct link (in this case "/books/1" for anid of "1").

The case of nested resourcesis alittle different as they typically required two identifiers (the
id of the resource and the one it is nested within). For example given the nested resources:

"/ books" (resources: ' book') {
"/ aut hors"(resources: "author")

If you wished to link to the show action of the aut hor controller, you would write:

/1 Results in /books/ 1/ authors/2
<g:link controller="author" action="show' nethod="GET" parans="[bookld: 1]" id="2">The Author</g:link>

However, to make this more concise there is aresour ce attribute to the link tag which can be
used instead:

/1 Results in /books/1/authors/2
<g:link resource="book/author" action="show' bookld="1" id="2">M Link</g:link>

The resource attribute accepts a path to the resource separated by a slash (in this case
"book/author"). The attributes of the tag can be used to specify the necessary booki d
parameter.

8.3.3 RedirectsIn URL Mappings

Since Grails 2.3, it is possible to define URL mappings which specify aredirect. When a
URL mapping specifies aredirect, any time that mapping matches an incoming request, a
redirect isinitiated with information provided by the mapping.

When a URL mapping specifies a redirect the mapping must either supply a String
representing a URI to redirect to or must provide a Map representing the target of the
redirect. That Map is structured just like the Map that may be passed as an argument to the
redi rect Method in a controller.

"/ viewBooks" (redirect: [uri: '/books/list'])
"/viewAut hors"(redirect: [controller: "author', action: "list'])
"/ viewPublishers"(redirect: [controller: 'publisher', action: '"list', permanent: true])

Request parameters that were part of the original request will not be included in the redirect
by default. To include them it is necessary to add the parameter keeppar answhenRedi rect: true.

"/ vi ewBooks" (redirect: [uri: '/books/list', keepParansWenRedirect: true])
"/viewAuthors"(redirect: [controller: "author', action: 'list', keepParansWienRedirect: true])
"/viewPubl i shers"(redirect: [controller: 'publisher', action: 'list', permanent: true, keepParansWienRedirect: true])

Simple Variables

The previous section demonstrated how to map simple URL s with concrete "tokens". In
URL mapping speak tokens are the sequence of characters between each slash, /. A
concrete token is one which iswell defined such as as/ product . However, in many
circumstances you don’t know what the value of a particular token will be until runtime. In
this case you can use variable placeholders within the URL for example:

static mappings = {
"/ product/$id"(controller: "product")

In this case by embedding a $id variable as the second token Grails will automatically map
the second token into a parameter (available via the params object) called i 4. For example
given the URL / pr oduct / MacBook, the following code will render "MacBook™ to the response:

cl ass Product Controller {
def index() { render parans.id }
}

Y ou can of course construct more complex examples of mappings. For example the
traditional blog URL format could be mapped as follows:

static mappings = {
"/ $bl og/ $year/ $rmont h/ $day/ $i d" (control l er: "blog", action: "show')
}

The above mapping would let you do things like:

/ graemer ocher/ 2007/ 01/ 10/ ny_f unky_bl og_entry

The individual tokensin the URL would again be mapped into the params object with
values available for year, nont h, day, i ¢ @nd so on.

Dynamic Controller and Action Names

Variables can also be used to dynamically construct the controller and action name. In fact
the default Grails URL mappings use this technique:

static mappings = {

"/ $controller/$action?/$id?"()

}

Here the name of the controller, action and id are implicitly obtained from the variables
control I er, acti on and i embedded within the URL.

Y ou can also resolve the controller name and action name to execute dynamically using a
closure:

static mappings = {
"/ $controller" {
action = { parans.goHere }
}
}

Optional Variables

Another characteristic of the default mapping is the ability to append a? at the end of a
variable to make it an optional token. In afurther example this technique could be applied to
the blog URL mapping to have more flexible linking:

static mappings = {
"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control l er:"bl og", action:"show')
}

With this mapping all of these URL s would match with only the relevant parameters being
populated in the params object:

/ graenmer ocher/ 2007/ 01/ 10/ ny_f unky_bl og_entry
/ graemer ocher/ 2007/ 01/ 10

/ graemer ocher/ 2007/ 01

/ gr aemer ocher/ 2007

/ gr aemer ocher

Optional File Extensions

If you wish to capture the extension of a particular path, then a special case mapping exists:

"/ $controller/$action?/$id?(.$format)?"()

By adding the (. sf or mat) » mapping you can access the file extension using the response. f or mat
property in acontroller:

def index() {
render "extension is ${response.format}"
}

Arbitrary Variables

Y ou can aso pass arbitrary parameters from the URL mapping into the controller by just
setting them in the block passed to the mapping:

"/ holiday/w n" {
id = "Mrrakech"
year = 2007

}

Thisvariables will be available within the params object passed to the controller.
Dynamically Resolved Variables

The hard coded arbitrary variables are useful, but sometimes you need to calcul ate the name

of the variable based on runtime factors. Thisis also possible by assigning a block to the
variable name:

"/ holiday/w n" {
id ={ parans.id }
isEligible = { session.user != null } // must be |ogged in

}

In the above case the code within the blocks is resolved when the URL is actually matched
and hence can be used in combination with all sorts of logic.

8.3.5 Mappingto Views

Y ou can resolve a URL to a view without a controller or action involved. For example to
map theroot URL / to a GSP at the location grails-app/views/index.gsp YOU could use;

static nmappings = {
"/"(view. "/index") [/ map the root URL
}

Alternatively if you need aview that is specific to a given controller you could use:

static mappings = {
"/ hel p"(controller: "site", view "help") // to a viewfor a controller

8.3.6 Mapping to Response Codes

Grails also lets you map HTTP response codes to controllers, actions or views. Just use a
method name that matches the response code you are interested in:

static mappings = {
"403"(controller: "errors", action: "forbidden")
"404"(controller: "errors", action: "notFound")
"500"(controller: "errors", action: "serverError")

}

Or you can specify custom error pages:

static mappings = {
"403"(view "/errors/forbidden")
"404" (view "/errors/notFound")
"500"(view "/errors/serverError")

}
Declarative Error Handling

In addition you can configure handlers for individual exceptions:

static mappings = {

"403"(view "/errors/forbidden")

"404" (view. "/errors/notFound")

"500"(controller: "errors", action: "illegal Argunent”,
exception: |11l egal Argunent Excepti on)

"500"(controller: "errors", action: "nullPointer",
exception: Nul | Pointer Exception)

"500"(controller: "errors", action: "custonException",
exception: MyException)

"500"(view "/errors/serverError")

}

With this configuration, an 111 egal Ar gument except i on Will be handled by the i 11 egal ar gunent

actioninerrorscontrol I er , A Nul | Poi nt er Excepti on will be handled by the nul 1 Poi nt er action, and
awexcepti on Will be handled by the cust onexcept i on action. Other exceptions will be handled
by the catch-all rule and usethe/errorss serverError View.

Y ou can access the exception from your custom error handing view or controller action
using the request’ s except i on attribute like so:

class ErrorController {
def handl eError () {
def exception = request.exception
/1 performdesired processing to handle the exception

}
}

If your error-handling controller action throws an exception as well, you'll end up with a
St ackOver f | owExcepti on.

8.3.7 Mapping to HTTP methods

URL mappings can a so be configured to map based on the HTTP method (GET, POST,
PUT or DELETE). Thisisvery useful for RESTful APIsand for restricting mappings based
on HTTP method.

As an exampl e the following mappings provide a RESTful APl URL mappings for the

Pr oduct Control |l er.

static mappings = {
"/ product/$id"(controller:"product”, action: "update", nethod: "PUT")
}

Note that if you specify a HTTP method other than GET in your URL mapping, you also
have to specify it when creating the corresponding link by passing the ret hod argument to
g:1ink OF g: createLi nk t0 get alink of the desired format.

8.3.8 Mapping Wildcards

Grails URL mappings mechanism also supports wildcard mappings. For example consider
the following mapping:

static mappings = {
"/images/*.jpg"(controller: "inage")
}

This mapping will match all paths to images such as/i mage/ 1 ogo. j pg. Of course you can
achieve the same effect with avariable:

static mappings = {
"/i mages/ $nane. j pg" (control ler: "image")
}

However, you can aso use double wildcards to match more than one level below:

static mappings = {
"/images/**.jpg"(controller: "inmge")
}

In this cases the mapplng will match /i mage/ | 0go. j pg aswell asyi mage/ ot her /1 ogo. j pg. EVEN
better you can use a double wildcard variable:

static mappings = {
/1 will match /image/l ogo.jpg and /i nege/other/| ogo.jpg
"/images/ $name**.j pg"(controller: "image")

}

In this case it will store the path matched by the wildcard inside a name parameter obtainable
from the params object:

def nane = parans. nane
println nane // prints "logo" or "other/l ogo"

If you use wildcard URL mappings then you may want to exclude certain URIs from Grails
URL mapping process. To do this you can provide an excl udes Setting inside the

Ur | Mappi ngs. gr oovy class:

class Url Mappi ngs {

static excludes
static mappi ngs

}

["/images/*", "/css/*"]

}

In this case Grails won't attempt to match any URIsthat start with /i nmages OF /css.

8.3.9 Automatic Link Re-Writing

Another great feature of URL mappingsis that they automatically customize the behaviour
of the link tag so that changing the mappings don’t require you to go and change all of your
links.

Thisis done through a URL re-writing technique that reverse engineers the links from the
URL mappings. So given a mapping such as the blog one from an earlier section:

static mappings = {
"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control | er:"bl og", action:"show')
}

If you use the link tag as follows:

<g:link controller="blog" acti on="show'
paranms="[bl og:'fred', year:2007]">
M/ Bl og
</ g:1ink>
<g:link controller="blog" acti on="show'
paranms="[bl og: ' fred', year:2007, nonth:10]">

My Blog - Cctober 2007 Posts
</ g:link>

Grails will automatically re-write the URL in the correct format:

M Bl og</ a>
W Blog - October 2007 Posts

8.3.10 Applying Constraints

URL Mappings also support Grails' unified validation constraints mechanism, which lets
you further "constrain” how a URL is matched. For example, if we revisit the blog sample
code from earlier, the mapping currently looks like this:

static nmappings = {

http://gsp.grails.org/latest/ref/Tags/link.html

"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control I er: "bl og", action:"show")
}

This alows URLs such as:

/ graemner ocher/ 2007/ 01/ 10/ ny_f unky_bl og_entry

However, it would also allow:

/ graemer ocher/ not _a_year/ not _a_nont h/ not _a_day/ ny_funky_bl og_entry

Thisis problematic asit forces you to do some clever parsing in the controller code.
Luckily, URL Mappings can be constrained to further validate the URL tokens:

"/ $bl og/ $year ?/ $mont h?/ $day?/ $i d?" {
controller = "bl og"
action = "show'
constraints {
year (mat ches: /\\\d{4}/)
nmont h(mat ches: /\\\d{2}/)
day(nmat ches: /\\\d{2}/)

}

In this case the constraints ensure that the year, mont h and day parameters match a particul ar
valid pattern thus relieving you of that burden later on.

8.3.11 Named URL Mappings

URL Mappings also support hamed mappings, that is mappings which have a name
associated with them. The name may be used to refer to a specific mapping when links are
generated.

The syntax for defining a named mapping is as follows:

static mappings = {
name <neppi ng nanme>: <url pattern> {
...

}
}

For example:

static mappings = {
nane personList: "/showPeople" {
controller = 'person'
action = 'list'
nanme accountDetails: "/details/$acct Nunber" {
controller = "'product'
action = 'accountDetails'

}

The mapping may be referenced in alink tag in a GSP.
<g: i nk mappi ng="per sonLi st">Li st Peopl e</ g:|i nk>

That would result in:

Li st Peopl e</ a>

Parameters may be specified using the params attribute.

<g: i nk mappi ng="account Det ai | s" paranms="[acct Nunber:'8675309']">
Show Account
</ g:1link>

That would result in:

Show Account </ a>

Alternatively you may reference a named mapping using the link namespace.

<l i nk: personLi st >Li st Peopl e</ | i nk: per sonLi st >

That would result in:

Li st Peopl e</ a>

The link namespace approach allows parameters to be specified as attributes.

<l ink:accountDetails acct Nunber ="8675309" >Show Account </ | i nk: account Det ai | s>

That would result in:

Show Account </ a>

To specify attributes that should be applied to the generated nref , Specify amp value to the
attrs attribute. These attributes will be applied directly to the href, not passed through to be
used as request parameters.

<link:accountDetails attrs="[class: 'fancy']" acctNunber="8675309">
Show Account
</link:account Det ai | s>

That would result in:

Show Account </ a>

8.3.12 Customizing URL Formats

The default URL Mapping mechanism supports camel case namesin the URLS. The default
URL for accessing an action named addnunber s in @ controller named wat hiel per cont rol 1 er
would be something like / mat hHel per/ addnunber s. Grails allows for the customization of this
pattern and provides an implementation which replaces the camel case convention with a
hyphenated convention that would support URLS like / mat h- hel per/ add- nunbers. TO enable
hyphenated URL s assign avalue of "hyphenated” to the graiis. web. url . converter property in

grail s-app/ conf/application.groovy.

grails-app/conf/application.groovy

grails.web.url.converter = 'hyphenated

Arbitrary strategies may be plugged in by providing a class which implements the
UrlConverter interface and adding an instance of that class to the Spring application context
with the bean name of grai 1 s. web. uri converter. Bean Nane. |f Grails finds a bean in the context
with that name, it will be used as the default converter and there is no need to assign avalue
tothegrails. web. url. converter Config property.

src/main/groovy/com/myapplication/MyUrlConverterlmpl.groovy

package com nyapplication

http://docs.grails.org/3.3.8/api/grails/web/UrlConverter.html

class MyUrl Converterlnpl inplenents grails.web. Ul Converter {

String toUrl Elenent(String propertyOr C assNane) {
/1 return sone representation of a property or class nane that should be used in URLs...
}

}
grail s-app/conf/spring/resources.groovy

beans = {
"${grails.web. Ul Converter. BEAN NAMVE}"(com nyappl i cati on. MyUr| Converterlnpl)

8.3.13 Namespaced Controllers

If an application defines multiple controllers with the same name in different packages, the
controllers must be defined in a namespace. The way to define a namespace for a controller
isto define a static property named namespace in the controller and assign a String to the
property that represents the namespace.

grails-app/controllers/com/app/reporting/AdminController.groovy
package com app.reporting
class AdninController {

static namespace = 'reports’

..
}

grails-app/controllers/com/app/security/ AdminController.groovy
package com app. security
class Admi nControl ler {

static namespace = 'users'

...
}

When defining url mappings which should be associated with a namespaced controller, the
namespace Variable needs to be part of the URL mapping.

grails-app/controllers/UrlM appings.groovy
class Url Mappi ngs {

static mappings = {
"/user Adm n' {

controller = "adnmn'
nanespace = 'users'’

}

"/report Admin' {
controller = "adnmn'
nanespace = 'reports’

"/ $nanespace/ $control | er/ $acti on?" ()

}
Reverse URL mappings also require that the nanespace be specified.

<g:link controller="adm n" namespace="reports">Cick For Report Admi n</g:link> <g:link controller="adm n" nanespace="us

When resolving a URL mapping (forward or reverse) to a namespaced controller, a mapping
will only match if the nanespace has been provided. If the application provides several
controllers with the same name in different packages, at most 1 of them may be defined

without a namespace property. If there are multiple controllers with the same name that do not
define ananespace property, the framework will not know how to distinguish between them
for forward or reverse mapping resolutions.

It is allowed for an application to use a plugin which provides a controller with the same
name as a controller provided by the application and for neither of the controllersto define a
namespace Property aslong as the controllers are in separate packages. For example, an
appllcatlon may include a controller named com account i ng. Repor ti ngcontrol 1 er @and the
application may use a plugin which provides a controller named

com humanr esour ces. Reporti ngCont rol I er . The only issue with that isthe URL mapping for the
controller provided by the plugin needs to be explicit in specifying that the mapping applies
to the repor ti ngoont rol 1 er Which is provided by the plugin.

See the following example.

static mappings = {
"/accountingReports" {
controller = "reporting"

"/ humanResour ceReports" {
controller = "reporting"
pl ugi n = "humanResour ces"

}

With that mapping in place, arequest to / accounti ngreports Will be handled by the
ReportingControl | er which is defined in the appllcatlon A requ&st 1O / hunanResour ceReport s will
be handled by the reportingcont rol 1 er Which is provided by the humanresour ces plugin.

There could be any number of reportingcontrolier controllers provided by any number of
plugins but no plugin may provide more than one reportingcontrol 1 er even if they are defined
in separate packages.

Assigning avalueto the pi ugi n Variable in the mapping is only required if there are multiple
controllers with the same name available at runtime provided by the application and/or
plugins. If the humanresour ces plUgin provides areportingcontrol 1 er @nd thereis no other

Repor ti ngCont rol I er @vailable at runtime, the following mapping would work.

static mappings = {
"/ humanResour ceReports" {
controller = "reporting"
}

}

It is best practice to be explicit about the fact that the controller is being provided by a
plugin.

8.4 CORS

Spring Boot provides CORS support out of the box, but it is difficult to configure in a Grails
application due to the way UrlMappings are used instead of annotations that define URLS.
Starting with Grails 3.2.1, we have added a way to configure CORS that makes sensein a
Grails application.

Once enabled, the default setting is "wide open”.

application.yml

grails:

cors:
enabl ed: true

That will produce a mapping to al urls;++ with:

allowedOrigins [+

dlowedMethods [+

adlowedHeaders [*]

exposedHeaders null

maxAge 1800

dlowCredentials true

Some of these settings come directly from Spring Boot and can change in future versions.
See Spring CORS Configuration Documentation

All of those settings can be easily overridden.

application.yml

grails:
cors:
enabl ed: true
al | onedOri gi ns:
- http://local host: 5000

In the example above, the al 1 owedar i gi ns Setting will replace+].
Y ou can also configure different URLS.

application.yml

grails:
cors:
enabl ed: true
al | onedHeader s:
- Content-Type
mappi ngs:
[api/**:
al | onedOri gi ns:
- http://1ocal host: 5000
Other configurations not specified default to the global config

Specifying at |east one mapping will disable the creation of the global mapping (/++). If
you wish to keep that setting, you should specify it along with your other mappings.

The settings above will produce a single mapping of /api/++ with the following settings:

https://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/web/cors/CorsConfiguration.html#applyPermitDefaultValues

allowedOrigins [http://1ocal host : 5000']
allowedMethods [+

allowedHeaders [content - Type']
exposedHeaders nui

maxAge 1800

allowCredentials true

If you don’t wish to override any of the default settings, but only want to specify URLS, you
can do so like this example:

application.yml
grails:
cors:
enabl ed: true
mappi ngs:
[api/**: inherit

8.5 Interceptors

Grails provides standal one I nterceptors using the create-interceptor command:

$ grails create-interceptor Mylnterceptor

The above command will create an Interceptor in the grai i s- app/ cont rol 1 ers directory with the
following default contents:

class Mylnterceptor {
bool ean before() { true }
bool ean after() { true }
void afterView) {
/1 no-op

}
}

I nterceptorsvsFilters

In versions of Grails prior to Grails 3.0, Grails supported the notion of filters. These are still
supported for backwards compatibility but are considered deprecated.

The new interceptors concept in Grails 3.0 is superior in a number of ways, most
significantly interceptors can use Groovy’s compi | est at i ¢ @annotation to optimize performance

LY

g

cache
cascal

(something which is often critical as interceptors can be executed for every request.) findA
findA
i findB
8.5.1 Defining I nterceptors (090
. . . . findO
By default interceptors will match the controllers with the same name. For exampleif you findo
have an interceptor called sooki nt ercept or then al requests to the actions of the sookcont rol 1 er findo
will trigger the interceptor. findw
. . . fir
Aninterceptor implements the Interceptor trait and provides 3 methods that can be used to ?st
intercept requests: gt
" getA!\
/** * Executed before a matched action * * @eturn Wiether the action should continue and execute */ QLM
bool ean before() { true } getPe
/** * Executed after the action executes but prior to viewrendering * * @eturn True if view rendering shoul d cdﬂﬁﬁ
bool ean after() { true } hasM:
/** * Executed after view rendering conpletes */ has()r

void afterView() {}

ident
As described above the vef ore method is executed prior to an action and can cancel the :223']
execution of the action by returning ai se. ——
isDirt
The after method is executed after an action executes and can halt view rendering if it :%;t
returns false. The arter method can also modify the view or model using the vi ew and model listOr
properties respectively: load
bool ean after () { m
nodel . foo = "bar" // add a new nodel attribute called 'foo' map\
view = "alternate' // render a different view called 'alternate'
true mapp
} mapp
. : . . merge
The af ter vi ew method is executed after view rendering completes. If an exception occurs, the name
exception is available using the t hr owabl e property of the Interceptor trait. prope
. . read
8.5.2 Matching Requests with I nteceptors refres
remo\
As mention in the previous section, by default an interceptor will match only requests to the save
associated controller by convention. However you can configure the interceptor to match transi
any request using the et ch or mat chai 1 methods defined in the Interceptor AP!. Vf?'} ide
where
The matching methods return a Matcher instance which can be used to configure how the w_her €
interceptor matches the request. M
withN
For example the following interceptor will match all requests except those to the 1 ogin W!ths
controller: withT

class Authlnterceptor {

g epnorO) | Pl

.excl udes(controller:"login")

}

bool ean before() { U_Sag§
/1 perform authentication URL
}
} codec
. ' contr¢
Y ou can a'so perform matching using named argument: core

http://docs.grails.org/3.3.8/api/grails/artefact/Interceptor.html
http://docs.grails.org/3.3.8/api/grails/artefact/Interceptor.html
http://docs.grails.org/3.3.8/api/grails/artefact/Interceptor.html
http://docs.grails.org/3.3.8/api/grails/interceptors/Matcher.html

cl ass Loggi ngl nterceptor {
Loggi ngl nterceptor() {
mat ch(control |l er:"book", action:"show') // using strings
mat ch(controller: ~/(author|publisher)/) // using regex

}

bool ean before() {

_
}

Y ou can use any number of matchers defined in your interceptor. They will be executed in

the order in which they have been defined. For example the above interceptor will match for

all of the following:
® when the show action of sookcontrol 1 er IS called
® when aut hor Control I er OF Publ i sher Control I er 1S Called
All named arguments except for uri accept either a String or a Regex expression. The uri

argument supports a String path that is compatible with Spring’s AntPathMatcher. The
possible named arguments are:

namespace - 1 he hamespace of the controller
® controller - The name of the controller
® .ction - The name of the action

® ethod - The HTTP method

® ui - The URI of the request. If this argument is used then al other arguments will be

ignored and only thiswill be used.

8.5.3 Ordering I nterceptor Execution

Interceptors can be ordered by defining an order property that defines a priority.

For example:

class Authlnterceptor {

int order = HI GHEST_PRECEDENCE
}

The default value of the order property is 0. Interceptor execution order is determined by
sorting the order property in an ascending direction and executing the lowest numerically
ordered interceptor first.

The values 1 aesT_Precepence and LonesT precepence can be used to define filters that should
should run first or last respectively.

Note that if you write an interceptor that isto be used by othersit is better increment or
decrement the 1 aHesT_precebence and Lonest_precepence tO alow other interceptorsto be
inserted before or after the interceptor you are authoring:

int order = Hl GHEST_PRECEDENCE + 50

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/AntPathMatcher.html

/1l or

int order = LOWEST_PRECEDENCE - 50

To find out the computed order of interceptors you can add a debug logger to 1 ogback. gr oovy
asfollows:

logger 'grails.artefact.Interceptor’', DEBUG ['STDOUT'], false

Y ou can override any interceptors default order by using bean override configuration in
grails-app/ conf/application.ym .

beans:
aut hl nterceptor:
order: 50

Orin grai | s-app/ conf/ appl i cation. groovy.

beans {
aut hl nterceptor {
order = 50
}
}

Thus giving you complete control over interceptor execution order.

8.6 Content Negotiation

Grails has built in support for Content negotiation using either the HTTP accept header, an
explicit format request parameter or the extension of a mapped URI.

Configuring Mime Types

Before you can start dealing with content negotiation you need to tell Grails what content
types you wish to support. By default Grails comes configured with a number of different
content types within grai I s-app/ conf / appl i cation. yni USING the grai I s. i me. types Setting:

grails:
m ne:
types:
all: "*/*
atom application/atom-xm
css: text/css
csv: text/csv
form application/x-wwformurlencoded
htm :
- text/htm
- application/xhtnm +xmn
js: text/javascript
j son:
- application/json
- text/json
mul tipartForm nultipart/formdata
rss: application/rss+xm
text: text/plain
hal :
- application/hal +j son
- application/hal +xm
xm :
- text/xm
- application/xn

The setti ng can aso bedonein grai | s-app/ conf/ appl i cation. groovy as shown below:

grails.mme.types = [// the first one is the default format
all: "0 /) tall' maps to '*' or the first available fornat in w thFornmat
atom "application/atomtxm ',

http://en.wikipedia.org/wiki/Content_negotiation

CSS: '"text/css',
csv: "text/csv',

form "application/ x-wwwformurl encoded',

htni: ["text/htm ', " application/xhtm +xm '],

js: "text/javascript',

j son: ['application/json', "text/json'],

nul tipartForm ‘multipart/formdata’,

rss: "application/rss+xm ',

text: "text/plain',

hal : [" application/hal +json', "' application/hal +xm "],
xm : ["text/xm "', "application/xm"']

]

The above bit of configuration allows Grails to detect to format of areguest containing
either the 'text/xml' or "application/xml’' mediatypes as ssmply 'xml'. Y ou can add your own
types by ssimply adding new entries into the map. The first one is the default format.

Content Negotiation using the format Request Parameter

Let’s say a controller action can return aresource in avariety of formats: HTML, XML, and
JSON. What format will the client get? The easiest and most reliable way for the client to
control thisisthrough atormat URL parameter.

So if you, as a browser or some other client, want aresource as XML, you can use a URL
likethis:

http://my. domai n. or g/ books?f or mat =xm

The result of thison the server sideisartormat property on the response Object with the value
xm .

Y ou can also define this parameter in the URL M appings definition:

"/ book/list"(controller:"book", action:"list") {
format = "xnml"
}

Y ou could code your controller action to return XML based on this property, but you can
also make use of the controller-specific wi t hror mat () method:

This example requi res the addition of the or g.grails. plugins:grails-plugin-converters pl ugin

inmport grails.converters. JSON
import grails.converters. XM.

cl ass BookController {

def list() {
def books = Book.list()

wi t hFor mat {
htm bookLi st: books
json { render books as JSON }
xm { render books as XM }
"*' { render books as JSON }

}

}
}

In this example, Grails will only execute the block inside wi t hror mat () that matches the
requested content type. So if the preferred format isnem then Grails will execute the nini ()
call only. Each 'block’ can either be a map model for the corresponding view (as we are
doing for 'html" in the above example) or a closure. The closure can contain any standard
action code, for example it can return amodel or render content directly.

When no format matches explicitly, a~ (wildcard) block can be used to handle all other

formats.

Thereis aspecial format, "all", that is handled differently from the explicit formats. If "all"
is specified (normally this happens through the Accept header - see below), then the first
block of wi t hrormat () 1S executed when thereisn’'t a~ (wildcard) block available.

Y ou should not add an explicit "al" block. In this example, aformat of "al" will trigger the
nemt handler (nem isthefirst block and thereisno + block).

wi t hFormat {
ht M bookLi st: books
json { render books as JSON }
xm { render books as XM }

}

When using withFormat make sureit isthelast call in your controller action as the return
value of the vi t hror mat method is used by the action to dictate what happens next.

Using the Accept header

Every incoming HTTP request has a special Accept header that defines what media types (or
mime types) aclient can "accept”. In older browsersthisistypicaly:

* [*

which simply means anything. However, newer browsers send more interesting values such
as this one sent by Firefox:

text/xm , application/xm, application/xhtm +xm, text/htm;qg=0.9, \
text/plain;g=0.8, imge/png, */*;q=0.5

This particular accept header is unhelpful because it indicates that XML isthe preferred
response format whereas the user isreally expecting HTML. That’swhy Grailsignores the
accept header by default for browsers. However, non-browser clients are typically more
specific in their requirements and can send accept headers such as

application/json

As mentioned the default configuration in Grails is to ignore the accept header for browsers.
Thisisdone by the configuration Setti Ng grails. nine. di sabl e. accept . header. user Agent s, whichis
configured to detect the magjor rendering engines and ignore their ACCEPT headers. This
allows Grails content negotiation to continue to work for non-browser clients:

grails.mne. di sabl e. accept. header. user Agents = [' Gecko', 'WebKit', 'Presto', 'Trident']

For example, if it sees the accept header above (‘application/json’) it will set format t0json as
you' d expect. And of course this works with the wi t hror mat () method in just the same way as
when therormat URL parameter is set (although the URL parameter takes precedence).

An accept header of */*' resultsin avalue of a1 for thetormat property.

If the accept header is used but contains no registered content types, Grails will assume a
broken browser is making the request and will set the HTML format - note that thisis
different from how the other content negotiation modes work as those would activate the
"al" format!

Request format vs. Response for mat

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Asof Grails 2.0, there is a separate notion of the request format and the response format.
The request format is dictated by the conrent_tvre header and is typically used to detect if the
incoming request can be parsed into XML or JSON, whilst the response format uses the file
extension, format parameter or ACCEPT header to attempt to deliver an appropriate
response to the client.

The withFormat available on controllers deal s specifically with the response format. If you
wish to add logic that deals with the request format then you can do so using a separate
wi t hror mat Method available on the request:

request. wi thFormat {
xm {
/1 read XML
}

json {
/1 read JSON
}
}

Content Negotiation with URI Extensions

Grails also supports content negotiation using URI extensions. For example given the
following URI:

/ book/1ist.xm

Thisworks as aresult of the default URL Mapping definition whichiis:

"/ $controll er/$action?/ $i d?(.$format) ?"{

Note the inclusion of the format Variable in the path. If you do not wish to use content
negotiation viathe file extension then simply remove this part of the URL mapping:

"/ $controller/$action?/ $i d?"{
Testing Content Negotiation

To test content negotiation in aunit or integration test (see the section on Testing) you can
either manipulate the incoming request headers:

voi d testJavascriptQutput() {
def controller = new TestController()
controller.request.addHeader "Accept”,
"text/javascript, text/htm, application/xm, text/xm,6 */*"

controller.testAction()
assertEquals "alert('hello')", controller.response.contentAsString

}

Or you can set the format parameter to achieve asimilar effect:

voi d testJavascriptQutput() {
def controller = new TestController()
controller.parans. format = 'js'

control ler.testAction()
assertEquals "alert('hello')", controller.response.contentAsString

}

O Traits

Overview
Grails provides a number of traits which provide access to properties and behavior that may
be accessed from various Grails artefacts as well as arbitrary Groovy classes which are part

of aGrails project. Many of these traits are automatically added to Grails artefact classes
(like controllers and taglibs, for example) and are easy to add to other classes.

9.1 Traits Provided by Grails

Grails artefacts are automatically augmented with certain traits at compile time.

Domain Class Traits

® grails.artefact. DomainClass

® grails.web.databinding.WebDataBinding

® org.grails.datastore.gorm.GormEntity

® org.grails.datastore.gorm.GormV alidateable

Controller Traits

® grals.artefact.gsp.TagLibrarylnvoker

® grails.artefact. AsyncController

® grails.artefact.controller.RestResponder

® grails.artefact.Controller

I nterceptor Trait
® grails.artefact.Interceptor
Tag Library Trait

® grails.artefact. TagLibrary

Below isalist of other traits provided by the framework. The javadocs provide more detail
about methods and properties related to each trait.

Trait Brief Description
grails.web.api.WebAttributes Common Web Attributes
grails.web.api.ServletAttributes Servlet APl Attributes

grails.web.databinding.DataBinder Data Binding API

http://docs.grails.org/3.3.8/api/grails/artefact/DomainClass.html
http://docs.grails.org/3.3.8/api/grails/web/databinding/WebDataBinding.html
http://gorm.grails.org/latest/api//org/grails/datastore/gorm/GormEntity.html
http://gorm.grails.org/latest/api//org/grails/datastore/gorm/GormValidateable.html
http://gsp.grails.org/latest/api/grails/artefact/gsp/TagLibraryInvoker.html
http://async.grails.org/latest/api/grails/artefact/AsyncController.html
http://docs.grails.org/3.3.8/api/grails/artefact/controller/RestResponder.html
http://docs.grails.org/3.3.8/api/grails/artefact/Controller.html
http://docs.grails.org/3.3.8/api/grails/artefact/Interceptor.html
http://gsp.grails.org/latest/api/grails/artefact/TagLibrary.html
http://docs.grails.org/3.3.8/api/grails/web/api/WebAttributes.html
http://docs.grails.org/3.3.8/api/grails/web/api/ServletAttributes.html
http://docs.grails.org/3.3.8/api/grails/web/databinding/DataBinder.html

grails.artefact.controller.support.RequestForwarder Request Forwarding API

grails.artefact.controller.support.ResponseRedirector Response Redirecting API

grails.artefact.controller.support.ResponseRenderer Response Rendering AP

grails.validation.Validateable Validation API

9.1.1 WebAttributes Trait Example

WebAttributes is one of the traits provided by the framework. Any Groovy class may
implement thistrait to inherit all of the properties and behaviors provided by the trait.

src/main/groovy/demo/Hel per.groovy
package deno
inport grails.web.api.WbAttributes
class Hel per inplenents WebAttributes {
Li st<String> getControl | erNanes() {
/1 There is no need to pass grailsApplication as an argunent
/1 or otherwi se inject the grailsApplication property. The

/1 WebAttributes trait provides access to grail sApplication.
grail sApplication.getArtefacts(' Controller')*. name

}

The traits are compatible with static compilation...

src/main/groovy/demo/Hel per.groovy
package deno

inmport grails.web.api.WbAttributes
i nport groovy.transform ConpileStatic

@Conpi | eStatic
class Hel per inplenents WebAttributes {

Li st<String> getControllerNanmes() {
/1 There is no need to pass grailsApplication as an argument
/1 or otherwi se inject the grailsApplication property. The
/1 WebAttributes trait provides access to grail sApplication.
grail sApplication.getArtefacts(' Controller')*. nanme

10 REST

REST isnot really atechnology in itself, but more an architectural pattern. REST isvery
simple and just involves using plain XML or JSON as a communication medium, combined
with URL patterns that are "representational” of the underlying system, and HTTP methods
such as GET, PUT, POST and DELETE.

http://docs.grails.org/3.3.8/api/grails/artefact/controller/support/RequestForwarder.html
http://docs.grails.org/3.3.8/api/grails/artefact/controller/support/ResponseRedirector.html
http://docs.grails.org/3.3.8/api/grails/artefact/controller/support/ResponseRenderer.html
http://docs.grails.org/3.3.8/api/grails/validation/Validateable.html
http://docs.grails.org/3.3.8/api/grails/web/api/WebAttributes.html

Each HTTP method maps to an action type. For example GET for retrieving data, POST for
creating data, PUT for updating and so on.

Grailsincludes flexible features that make it easy to create RESTful APIs. Creating a
RESTful resource can be as simple as one line of code, as demonstrated in the next section.

10.1 Domain classes as REST resources

The easiest way to create aRESTful API in Grailsisto expose adomain class as aREST
resource. This can be done by adding the grai i s. rest . resour ce transformation to any domain
class:

inport grails.rest.*

@Resour ce(uri="/books")
cl ass Book {

String title

static constraints = {
title blank:fal se
}

}

Simply by adding the resour ce transformation and specifying a URI, your domain class will
automatically be available as a REST resource in either XML or JSON formats. The
transformation will automatically register the necessary RESTful URL mapping and create a
controller called Bookcontrol I er .

You can try it out by adding some test data to soot st r ap. gr oovy:

def init = { servletContext ->
new Book(title:"The Stand").save()
new Book(title:"The Shining").save()

}

And then hitting the URL http://localhost:8080/books/1, which will render the response like:

<?xm version="1.0" encodi ng="UTF-8"?>
<book id="1">

<title>The Stand</title>
</ book>

If you change the URL to http://localhost:8080/books/1.json you will get a JSON response
such as:

{"id":1,"title":"The Stand"}

If you wish to change the default to return JSON instead of XML, you can do this by setting
theformat s attribute of the resour ce transformation:

inport grails.rest.*

@Resource(uri="/books', formats=['json', 'xm'])
class Book {

}

With the above example JSON will be prioritized. The list that is passed should contain the
names of the formats that the resource should expose. The names of formats are defined in
the grails.mme.types Setti ng of appl i cation. groovy.

grails.mme.types = [

http://localhost:8080/books/1
http://localhost:8080/books/1.json

j;sbn: ["application/json', "text/json'],

XI.'ﬂ.Z ["text/xm ', "application/xm"]
]

See the section on Configuring Mime Types in the user guide for more information.

Instead of using the file extension in the URI, you can also obtain a JSON response using
the ACCEPT header. Here' s an example using the Unix curi tool:

$ curl -i -H "Accept: application/json" |ocal host: 8080/ books/1
{"id":1,"title":"The Stand"}

This works thanks to Grails' Content Negotiation features.

Y ou can create a new resource by issuing a rost request:

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title":"Al ong Cane A Spider"}"' |ocal host: 8080/ books
HTTP/ 1.1 201 Created
Server: Apache-Coyote/ 1.1

Updating can be done with a rur request:

$ curl -i -X PUT -H "Content-Type: application/json" -d '{"title":"Along Cane A Spider"}' |ocal host: 8080/ books/1
HTTP/ 1.1 200 OK
Server: Apache-Coyote/1.1

Finally aresource can be deleted with peLere request:

$ curl -i -X DELETE | ocal host: 8080/ books/ 1
HTTP/ 1.1 204 No Content
Server: Apache-Coyote/1.1

Asyou can see, the resour ce transformation enables al of the HTTP method verbs on the
resource. Y ou can enable only read-only capabilities by setting the r eadoni y attribute to true:

inport grails.rest.*

@Resour ce(uri="/books', readOnly=true)
cl ass Book {

}

In this case post, pur and oeLete requests will be forbidden.

10.2 Mapping to REST resour ces

If you prefer to keep the declaration of the URL mapping in your ur i Mappi ngs. gr oovy file then
simply removing the uri attribute of the resour ce transformation and adding the following
lineto uri Mappi ngs. gr oovy will suffice:

"/ books" (resources: "book")

Extending your API to include more end points then becomestrivial:

"/ books" (resources: "book") {
"/ publisher"(controller:"publisher", method:"GET")
}

The above example will expose the URI / books 1/ publ i sher .

A more detailed explanation on creating RESTful URL mappings can be found in the URL
M appings section of the user guide.

10.3 Linking to REST resources from GSP pages

The1ink tag offers an easy way to link to any domain class resource:

<g:link resource="${book}">M Link</g:link>

However, currently you cannot use g:link to link to the DELETE action and most browsers
do not support sending the DELETE method directly.

The best way to accomplish thisis to use aform submit:

<form acti on="/book/ 2" nethod="post">
<i nput type="hidden" nanme="_net hod" val ue="DELETE"/>
</fornp

Grails supports overriding the request method via the hidden _ret hod parameter. Thisis for
browser compatibility purposes. Thisis useful when using restful resource mappings to
create powerful web interfaces. To make alink fire thistype of event, perhaps capture all
click events for links with a dat a- met hod attribute and issue a form submit via JavaScript.

10.4 Versioning REST resour ces

A common requirement with aREST API isto expose different versions at the same time.
There are afew ways this can be achieved in Grails.

Versioning using the URI

A common approach isto use the URI to version APIs (although this approach is
discouraged in favour of Hypermedia). For example, you can define the following URL

mappings:

"/ books/v1"(resources: "book", nanespace:'vl')
"/ books/v2" (resources: "book", nanespace:'v2')

That will match the following controllers:

package nyapp.vl

cl ass BookController
static namespace = 'v1'

-~

package nyapp.v2

cl ass BookController
static namespace = 'v2

}

-~

This approach has the disadvantage of requiring two different URI namespaces for your
API.

Versioning with the Accept-Version header

As an alternative Grails supports the passing of an accept - ver si on header from clients. For
example you can define the following URL mappings:

"/ books"(version:'1.0', resources:"book", nanespace:'vl')
"/ books"(version:'2.0', resources:"book", nanespace:'v2')

Then in the client ssmply pass which version you need using the accept - ver si on header:

$ curl -i -H "Accept-Version: 1.0" -X GET http://I|ocal host: 8080/ books
Versioning using Hypermedia/ Mime Types

Another approach to versioning isto use Mime Type definitions to declare the version of
your custom media types (see the section on "Hypermedia as the Engine of Application
State”" for more information about Hypermedia concepts). For example, in appl i cati on. gr oovy
you can declare a custom Mime Type for your resource that includes a version parameter
(the'v' parameter):
grails.mnme.types = [

all: "*/*",

book: "application/vnd. books. org. book+j son; v=1. 0",
bookv2: "application/vnd. books. org. book+j son; v=2. 0",

Itiscritical that place your new mime types after the 'all' Mime Type because if the
Content Type of the request cannot be established then the first entry in the map is used for
the response. If you have your new Mime Type at the top then Grails will alwaystry and
send back your new Mime Type if the requested Mime Type cannot be established.

Then override the renderer (see the section on " Customizing Response Rendering" for more
information on custom renderers) to send back the custom Mime Typein

grail s-app/ conf/spring/resourses. groovy.

inmport grails.rest.render.json.*
inport grails.web.mne.*

beans = {
bookRender er V1(JsonRender er, myapp.vl1. Book, new M nmeType("application/vnd. books. org. book+j son", [v:"1.0"]))
bookRender er V2(JsonRender er, myapp.v2. Book, new M nmeType("application/vnd. books. org. book+j son", [v:"2.0"]))
}

Then update the list of acceptable response formatsin your controller:

cl ass BookController extends Restful Controller {
static responseFormats = ['json', 'xm', 'book', 'bookv2']

1o
}

Then using the accept header you can specify which version you need using the Mime Type:

$ curl -i -H "Accept: application/vnd. books. org. book+json; v=1.0" -X GET http://|ocal host: 8080/ books

10.5 Implementing REST controllers

The resour ce transformation is a quick way to get started, but typically you'll want to
customize the controller logic, the rendering of the response or extend the API to include
additional actions.

10.5.1 Extending the RestfulController super class

The easiest way to get started doing so is to create anew controller for your resource that

extendsthe graiis. rest. Restful control I er SUper class. For example:

cl ass BookControl |l er extends Restful Controll er<Book> {
static responseFormats = ['json', 'xnml']
BookController() {
super (Book)
}

}

To customize any logic you can just override the appropriate action. The following table
provides the names of the action names and the URIs they map to:

HTTP Method URI Controller Action
GET /books index

GET /books/create create

POST /books save

GET /books/${ id} show

GET /books/${ id} /edit edit

PUT /books/${id} update

DELETE /books/${ id} delete

Thecreate and edi t actions are only needed if the controller exposes an HTML interface.

As an example, if you have a nested resource then you would typically want to query both
the parent and the child identifiers. For example, given the following URL mapping:

"/aut hors"(resources: "' author') {
"/ books" (resources: ' book')
}

Y ou could implement the nested controller as follows:

cl ass BookControl |l er extends Restful Controller {
static responseFormats = ['json', 'xml']
BookController() {
super (Book)

@verride
protected Book queryForResource(Serializable id) {
Book. where {
id == id & author.id == parans. aut horld

}.find()

The example above subclasses rest 1 ul cont rol 1 er @and overrides the protected quer yFor Resour ce
method to customize the query for the resource to take into account the parent resource.

Customizing Data Binding In A RestfulController Subclass

The Restful Controller class contains code which does data binding for actionslike save and
updat e. The class defines a get aj ect ToBi nd() method which returns a value which will be used
as the source for data binding. For example, the update action does something like this...

class Restful Controller<T> {

def update() {
T instance = // retrieve instance fromthe database...

instance. properties = getObj ect ToBi nd()

...
}

...
}

By default the get avj ect Tosi nd() Method returns the request object. When the request 0bject is
used as the binding source, if the request has a body then the body will be parsed and its
contents will be used to do the data binding, otherwise the request parameters will be used to
do the data binding. Subclasses of Restful Controller may override the get aj ect ToBi nd()
method and return anything that is avalid binding source, including aMap or a
DataBindingSource. For most use cases binding the request is appropriate but the

get obj ect Togi nd() Method allows for changing that behavior where desired.

Using custom subclass of RestfulController with Resour ce annotation
Y ou can also customize the behaviour of the controller that backs the Resource annotation.

The class must provide a constructor that takes a domain class asit’s argument. The second
constructor is required for supporting Resource annotation with readOnly=true.

Thisisatemplate that can be used for subclassed Restful Controller classes used in Resource
annotations:

cl ass Subcl assRest ful Control | er<T> extends Restful Controller<T> {
Subcl assRest ful Control | er (C ass<T> domai nCl ass) {
t hi s(domai nCl ass, fal se)

}

Subcl assRest ful Control | er (G ass<T> domai nC ass, bool ean readOnly) {
super (domai nCl ass, readOnly)

}
}

Y ou can specify the super class of the controller that backs the Resource annotation with the
super Cl ass attribute.

inport grails.rest.*

@Resource(uri="/books', superd ass=Subcl assRestful Controller)
class Book {

String title

static constraints = {
title blank:fal se
}
}

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.grails.org/3.3.8/api/grails/databinding/DataBindingSource.html

10.5.2 Implementing REST Controllers Step by Step

If you don’t want to take advantage of the features provided by the rest fu control 1 er SUpEr
class, then you can implement each HTTP verb yourself manually. Thefirst step isto create
acontroller:

$ grails create-controller book

Then add some useful imports and enable readOnly by default:

inport grails.gormtransactions.*
inmport static org.springframework. http. Ht pStatus.*
inmport static org.springframework. http. H t pMet hod. *

@ransactional (readOnly = true)
cl ass BookController {

}

Recall that each HTTP verb matches a particular Grails action according to the following
conventions:

HTTP Method URI Controller Action
GET /books index

GET /books/${ id} show

GET /books/create create

GET /books/${ id} /edit edit

POST /books save

PUT /books/${id} update

DELETE /books/¥{ id} delete

Thecreate and edi t actions are already required if you plan to implement an HTML
interface for the REST resource. They are there in order to render appropriate HTML
formsto create and edit aresource. They can be discarded if that is not a requirement.

The key to implementing REST actions is the respond method introduced in Grails 2.3. The
respond Method tries to produce the most appropriate response for the requested content type
(JSON, XML, HTML etc.)

I mplementing the 'index’ action

For example, to implement the i ndex action, simply call the respond method passing the list of
objects to respond with:

def index(Integer max) {
paranms. max = Math. m n(max ?: 10, 100)
respond Book. | i st (parans), nodel:[bookCount: Book.count()]

}

Note that in the above example we also use the mder argument of the respond method to
supply thetotal count. Thisisonly required if you plan to support pagination via some user
interface.

The respond method will, using Content Negotiation, attempt to reply with the most
appropriate response given the content type requested by the client (viathe ACCEPT header
or file extension).

If the content type is established to be HTML then amodel will be produced such that the
action above would be the equivalent of writing:

def index(Integer nmax) {
paranms. nex = Math. m n(max ?: 10, 100)
[bookLi st: Book. list(parans), bookCount: Book.count()]

}

By providing an i ndex. gsp file you can render an appropriate view for the given model. If the
content type is something other than HTML then the respona method will attempt to lookup
an appropriate grail s. rest. render. Renderer iNStance that is capable of rendering the passed
object. Thisisdone by inspecti ng thegraiis. rest.render. RendererRegistry.

By default there are already renderers configured for JSON and XML, to find out how to
register a custom renderer see the section on "Customizing Response Rendering".

I mplementing the 'show' action

The show action, which is used to display and individual resource by id, can be implemented
in one line of Groovy code (excluding the method signature):

def show(Book book) {
respond book
}

By specifying the domain instance as a parameter to the action Grails will automatically
attempt to lookup the domain instance using the i « parameter of the request. If the domain
instance doesn’t exist, then nui1 Will be passed into the action. The respona method will return
a 404 error if null is passed otherwise once again it will attempt to render an appropriate
response. If the format isHTML then an appropriate model will produced. The following
action is functionally equivalent to the above action:

def show(Book book) {
i f(book == null) {
render status: 404

el se {
return [book: book]

}
}

I mplementing the 'save' action

The save action creates new resource representations. To start off, smply define an action

that accepts aresource as the first argument and mark it as transacti onal With the
grails.gormtransactions. Transacti onal transform:

@ransact i onal
def save(Book book) {

}

Then thefirst thing to do is check whether the resource has any validation errors and if so
respond with the errors:

i f (book. hasErrors()) {
respond book.errors, view'create'
el se {

}

In the case of HTML the 'create’ view will be rendered again so the user can correct the
invalid input. In the case of other formats (JSON, XML etc.), the errors object itself will be
rendered in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY)
returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book. save flush:true
wi t hFor mat {
htm {

flash. ressage = nessage(code: 'default.created. nessage', args: [nessage(code: 'book.|abel', default:

redi rect book
}
"*' { render status: CREATED }
}

In the case of HTML aredirect isissued to the originating resource and for other formats a
status code of 201 (CREATED) isreturned.

I mplementing the 'update’ action

The updat e action updates an existing resource representation and is largely similar to the save
action. First define the method signature:

@r ansact i onal
def updat e(Book book) {

}

If the resource exists then Grails will load the resource, otherwise null is passed. In the case
of null, you should return a 404:

if(book == null) {
render status: NOT_FOUND

el se {

}

Then once again check for errors validation errors and if so respond with the errors:

i f(book. hasErrors()) {
respond book.errors, view'edit'

el se {

}

' Book'

In the case of HTML the 'edit’ view will be rendered again so the user can correct the invalid
input. In the case of other formats (JSON, XML etc.) the errors object itself will be rendered
in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY) returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book. save flush:true
wi t hFormat {
htm {
flash. message = nmessage(code: 'default.updated. nessage', args: [nessage(code: 'book.label', default: 'Book'), k
redirect book

*' { render status: K}
}

In the case of HTML aredirect isissued to the originating resource and for other formats a
status code of 200 (OK) is returned.

I mplementing the 'delete’ action

The del et e action deletes an existing resource. The implementation is largely similar to the
updat e action, except the dei ete() method is called instead:

book. del ete flush:true
wi t hFormat {
htm {
flash. message = nessage(code: 'default.deleted. nessage', args: [nessage(code: 'Book.|abel', default: 'Book'), k
redirect action:"index", nethod:"GET"

}
"*'{ render status: NO _CONTENT }
}

Notice that for an HTML response aredirect isissued back to thei ndex action, whilst for
other content types aresponse code 204 (NO_CONTENT) is returned.

10.5.3 Generating a REST controller using scaffolding

To see some of these concepts in action and help you get going, the Scaffolding plugin,
version 2.0 and above, can generate a REST ready controller for you, ssmply run the
command:

$ grails generate-controller <<Domain C ass Name>>

10.6 The REST Profile

Since Grails 3.1, Grails supports atailored profile for creating REST applications that
provides a more focused set of dependencies and commands.

To get started with the REST profile, create an application specifying rest-api as the name of
the profile:

$ grails create-app ny-api --profile rest-api
Thiswill create anew REST application that provides the following features:
® Default set of commands for creating and generating REST endpoints

¢ Defaultsto using JSON views for rendering responses (see the next section)

http://grails.org/plugins.html#plugin/scaffolding

® Fewer pluginsthan the default Grails plugin (no GSP, no Asset Pipeline, nothing HTML
related)

Y ou will notice for examplein the grai 1 s-app/ vi ews directory that there are «. gson files for
rendering the default index page and as well as any 404 and 500 errors.

If you issue the following set of commands:

$ grails create-domain-class ny.api.Book
$ grails generate-all ny.api.Book

Instead of CRUD HTML interface a REST endpoint is generated that produces JSON
responses. In addition, the generated functional and unit tests by default test the REST
endpoint.

10.7 The AngularJS Profile

Since Grails 3.1, Grails supports a profile for creating applications with AngularJS that
provides a more focused set of dependencies and commands. The angular profile inherits
from the REST profile and therefore has all of the commands and properties that the REST
profile has.

To get started with the AngularJS profile, create an application specifying angui arj s asthe
name of the profile:

$ grails create-app ny-api --profile angularjs
Thiswill create anew Grails application that provides the following features:
® Default set of commands for creating AngularJS artefacts
® Gradle plugin to manage client side dependencies
® Gradle plugin to execute client side unit tests
® Asset Pipeline plugins to ease devel opment

By default the AngularJS profile includes GSP support in order to render the index page.
Thisis necessary because the profileis designed around asset pipeline.

The new commands are:
°
cr eat e- ng- conponent
create-ng-controller
create-ng-directive
creat e- ng- domai n

creat e- ng- nodul e

creat e-ng-service

Project structure

The AngularJS profileis designed around a specific project structure. The create-ng
commands will automatically create modules where they do not exist.

Example:

$ grails create-ng-controller foo

Thiswill produce Afoocontroller.js fileiNgrails- app/ asset s/ j avascri pts/ ${defaul t package

nanme}/controllers.

By default the angularjs profile will create filesin the j avascripts directory. You can
change that behavior in your configuration with the key grai i s. codegen. angul ar . asset Dir .

$ grails create-ng-domain foo.bar

Thiswill pI'OdUCeaBar.j s filein grail s-app/ assets/j avascri pt s/ f oo/ domi ns. It will also create
the "foo" moduleif it does not already exist.

$ grails create-ng-nodul e foo. bar

Thiswill produce aAfoo.bar.js filein grail s-app/ assets/j avascri pts/ f oo/ bar . NOte the naming
convention for modulesis different than other artefacts.

$ grails create-ng-service foo.bar --type constant

Thiswill prOdUCeabar.j s fileingrail s-app/ asset s/ j avascri pt s/ f oo/ servi ces. |t will also create
the "foo" moduleif it does not already exist. The creat e- ng- servi ce cOMmmand accepts a flag
-type. Thetypesthat can be used are:

® service

factory default

* vaue

provider

constant

Along with the artefacts themselves, the profile will also produce a skeleton unit test file
under src/test/javascripts fOr each create command.

Client side dependencies

The Gradle Bower Plugin is used to manage dependencies with bower. Visit the plugin
documentation to learn how to use the plugin.

Unit Testing

The Gradle Karma Plugin is used to execute client side unit tests. All generated tests are
written with Jasmine. Visit the plugin documentation to learn how to use the plugin.

Asset Pipeline

https://github.com/craigburke/bower-installer-gradle
https://github.com/craigburke/karma-gradle

The AngularJS profile includes severa asset pipeline plugins to make development easier.

® JS Closure Wrap Asset Pipeline will wrap your Angular code in immediately invoked
function expressions.

* Annotate Asset Pipeline will annotate your dependencies to be safe for minification.

® Template Asset Pipeline will put your templates into the st enpi at ecache t0 prevent http
requests to retrieve the templates.

10.8 The Angular Profile

Since Grails 3.2.1, Grails supports a profile for creating applications with Angular that
provides a more future facing setup.

The biggest change in this profile is that the profile creates a multi project gradie build. This
isthefirst profile to have done so. The Angular profile relies on the Angular CL 1 to manage
the client side application. The server side application is the same as an application created
with therest-api profile.

To get started with the Angular profile, create an application specifying angul ar as the name
of the profile:

$ grails create-app ny-app --profile angul ar

Thiswill create any- app directory with the following contents:

client/

gradl e/

gradl ew

gr adl ew. bat
server/
settings.gradle

The entire client application livesin theciient folder and the entire server application lives
in the server folder.

Prerequisites

To use this profile, you should have Node, NPM, and the Angular CL1 installed. Node
should be at least version 5 and NPM should be at |east version 3.

* Node && NPM

* Angular CLI

Project Structure

The Angular profile is designed to be used with the Angular CLI. The CLI was used to
create the client application side of the profile to start with. The CLI provides commands to
do most of the things you would want to do with the client application, including creating
components or services. Because of that, the profile itself provides no commands to do those
same things.

https://github.com/craigburke/js-closure-wrap-asset-pipeline
https://github.com/craigburke/angular-annotate-asset-pipeline
https://github.com/craigburke/angular-template-asset-pipeline
https://github.com/angular/angular-cli
https://docs.npmjs.com/getting-started/installing-node
https://github.com/angular/angular-cli#installation
https://github.com/angular/angular-cli

Running The App

To execute the server side application only, you can execute the boot run task in the server
project:

./ gradl ew server:boot Run

The same can be done for the client application:

./gradl ew client:bootRun

To execute both, you must do so in parallel:
./ gradl ew boot Run --parallel

It is necessary to do so in parallel because by default Gradle executes tasks synchronously,
and neither of the boot run tasks will "finish".

Testing

The default client application that comes with the profile provides some tests that can be
executed. To execute tests in the application:

./ gradl ew test

Thetest task will execute unit tests with Karma and Jasmine.

./gradl ew i ntegrationTest

TheintegrationTest task will execute e2e tests with Protractor.

Y ou can execute thetest and integrationTest tasks on each of the sub-projects the same as
you would boot Run.

CORS

Because the client side and server side will be running on separate ports, CORS
configuration is required. By default the profile will configure the server side to allow
CORS from all hosts viathe following config:

server/grails-app/conf/application.yml
grails:

cors:
enabl ed: true

See the section on CORS in the user guide for information on configuring this feature for
your needs.

10.9 JSON Views

As mentioned in the previous section the REST profile by default uses JSON views to
render JSON responses. These play asimilar role to GSP, but instead are optimized for
outputing JSON responses instead of HTML.

Y ou can continue to separate your application in terms of MV C, with the logic of your

application residing in controllers and services, whilst view related matters are handled by
JSON views.

JSON views aso provide the flexibility to easily customize the JISON presented to clients
without having to resort to relatively complex marshalling libraries like Jackson or Grails
marshaller API.

Since Grails 3.1, JSON views are considered by the Grails team the best way to present
JSON output for the client, the section on writing custom marshallers has been removed
from the user guide. If you are looking for information on that topic, see the Grails 3.0.x

guide.

10.9.1 Getting Started

If you are using the REST or AngularJS profiles then the JSON views plugin will already be
included and you can skip the remainder of this section. Otherwise you will need to modify
YOUT bui | d. gradi e t0 include the necessary plugin to activate JSON views:

conpile 'org.grails.plugins:views-json:1.0.0" // or whatever is the |latest version

The source code repository for JSON views can be found on Github if you are looking for
more documentation and contributions

In order to compile JSON views for production deployment you should also activate the
Gradle plugin by first modifying the bui 1 dscri pt block:

buil dscript {
débendencies {
éiésspath "org.grails. plugins:views-gradle:1.0.0"

}
}

Then apply the org. grai i s. pl ugi ns. vi ews- j son Gradle plugin after any Grails core gradle
plugins:

ébbly plugin: "org.grails.grails-web"
apply plugin: "org.grails.plugins.views-json"

Thiswill add aconpi 1 easonvi ews task to Gradle, which isinvoked prior to creating the
production JAR or WAR file.

10.9.2 Creating JSON Views

JSON views go into the grai 1 s- app/ vi ews directory and end with the . gson suffix. They are
regular Groovy scripts and can be opened in any Groovy editor.

Example JSON view:

json. person {
name "bob"

}

To open them in the Groovy editor in Intellij IDEA, double click on the file and when
asked which file to associate it with, choose "Groovy"

http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers
http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers
https://github.com/grails/grails-views

The above JSON view produces:

{"person": {"name": "bob"}}
Thereisan implicit j son variable which is an instance of StreamingJsonBuilder.

Example usages:

json(1,2,3) == "[1,2,3]"
json { nane "Bob" == '{"nane": "Bob"}"'
json([1,2,3]) { nit } =="[{"n":2},{"n":2},{"n":3}]"

Refer to the APl documentation on StreamingJsonBuilder for more information about what
ispossible.

10.9.3 JSON View Templates

Y ou can define templates starting with underscore _. For example given the following
template cdled _person. gson.

nodel {
Person person
}

json {

name person. name
age person. age

Y ou can render it with aview as follows;

nodel {
Fam ly famly
}
json {
nane family.father. name
age fam ly. father. age
ol dest Child g.render(tenpl ate: "person”, nodel:[person: family.children.max { Person p -> p.age }])
children g.render(tenpl ate:"person”, collection: famly.children, var:'person')
}

Alternatively for amore concise way to invoke templates, using the tmpl variable:

nodel {
Family famly
}
json {
nane family.father. name
age fam ly. father. age
ol destChild tnpl.person(fanily.children.max { Person p -> p.age }])

children tnpl.person(famly.children)
}

10.9.4 Rendering Domain Classes with JSON Views

Typicaly your model may involve one or many domain instances. JSON views provide a
render method for rendering these.

For example given the following domain class:

cl ass Book {
String title
}

And the following template:

http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html
http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html

nmodel {
Book book

json g.render (book)

The resulting output is:

{id:1, title:"The Stand"}

Y ou can customize the rendering by including or excluding properties:

json g.render (book, [includes:['title']])

Or by providing a closure to add additional JSON output:

json g.render (book) {
pages 1000

10.9.5 JSON Views by Convention

There are afew useful conventions you can follow when creating JSON views. For example
if you have adomain class called sook, then creating a template located at

grai | s-app/ vi ews/ book/ _book. gson and using the respond method will result in rendering the
template:

def show(Long id) {
respond Book. get (i d)
}

In addition if an error occurs during validation by default Grails will try to render atemplate
called grail s-app/ vi ews/ book/ errors. gson, otherwise it will try to render
grails-app/views/errors/_errors. gson if the former doesn’t exist.

Thisis useful because when persisting objects you can respond With validation errors to
render these aforementioned templates:

@r ansact i onal
def save(Book book) {
if (book.hasErrors()) {
transactionStatus. set Rol | backOnl y()
respond book. errors
}
el se {
/1 valid object
}
}

If avalidation error occursin the above example the grai I s- app/ vi ews/ book/ _errors. gson
template will be rendered.

For more information on JSON views (and Markup views), see the JSON Views user guide.

10.10 Customizing Response Rendering

If you are looking for amore low-level APl and JSON or Markup views don’t suite your
needs then you may want to consider implementing a custom renderer.

10.10.1 Customizing the Default Renderers

http://views.grails.org/latest/

The default renderers for XML and JSON can be found in the grai i s. rest. render. xni and
grails.rest.render.json packages respectively. These use the Grails converters (
grails.converters. XM aNd grails. converters. JSO\I) by default for response renderi ng.

Y ou can easily customize response rendering using these default renderers. A common
change you may want to make isto include or exclude certain properties from rendering.

Including or Excluding Propertiesfrom Rendering

As mentioned previously, Grails maintains aregistry of graiis.rest.render. Renderer iNStances.
There are some default configured renderers and the ability to register or override renderers
for agiven domain class or even for a collection of domain classes. To include a particular
property from rendering you need to register a custom renderer by defining abean in

grail s-app/ conf/spring/resources. groovy.

inmport grails.rest.render.xm.*
beans = {
bookRender er (Xml Render er, Book) {
includes = ["title']
}
}
The bean name is not important (Grails will scan the application context for all registered
renderer beans), but for organizational and readability purposesit is recommended you
name it something meaningful.

To exclude a property, the exci udes property of the xm renderer class can be used:

inmport grails.rest.render.xm.*

beans = {
bookRender er (Xml Renderer, Book) {
excludes = ['ishn']

}
}

Customizing the Converters

As mentioned previously, the default renders use the grai 1 s. converters package under the
covers. In other words, under the covers they essentially do the following:

inport grails.converters.*

.ré.nder book as XM

/1 or render book as JSON

Why the separation between converters and renderers? Well arenderer has more flexibility
to use whatever rendering technology you chose. When implementing a custom renderer
you could use Jackson, Gson or any Javallibrary to implement the renderer. Converters on
the other hand are very much tied to Grails own marshalling implementation.

10.10.2 Implementing a Custom Render er

If you want even more control of the rendering or prefer to use your own marshalling
techniques then you can implement your own renderer instance. For example below isa
simple implementation that customizes the rendering of the sook class.

http://wiki.fasterxml.com/JacksonHome
http://code.google.com/p/google-gson/

package nyapp
import grails.rest.render.*
inmport grails.web.mne. MnmeType

cl ass BookXm Renderer extends Abstract Renderer <Book> {

BookXm Renderer () {
super (Book, [M neType. XM, M neType. TEXT_XM.] as M neType[])
}

voi d render (Book object, RenderContext context) {
cont ext . content Type = M neType. XM.. nane

def xm = new groovy. xnl . Mar kupBui | der (context.witer)
xm . book(id: object.id, title:object.title)

}

The abst ract Renderer SUPEr class has a constructor that takes the class that it renders and the
M meType(S) that are accepted (viathe ACCEPT header or file extension) for the renderer.

To configure this renderer, Slmply add it isabean to grai | s-app/ conf/ spring/ resour ces. groovy:

beans = {
bookRender er (myapp. BookXnm Render er)
}

The result will be that al sook instances will be rendered in the following format:
<book id="1" title="The Stand"/>

If you change the rendering to a completely different format like the above, then you also
need to change the binding if you plan to support POST and PUT requests. Grails will not
automatically know how to bind data from a custom XML format to adomain class
otherwise. See the section on "Customizing Binding of Resources' for further information.

Container Renderers

A grails.rest.render. ContainerRenderer 1S arenderer that renders responses for containers of
objects (lists, maps, collections etc.). The interface islargely the same as the render er
interface except for the addition of the get conponent Type() Method, which should return the
"contained" type. For example:

cl ass BookLi st Renderer inplenments Contai ner Renderer<Li st, Book> {
Cl ass<Li st > get Target Type() { List }
Cl ass<Book> get Conmponent Type() { Book }
M meType[] getM meTypes() { [M nmeType. XM.] as M neType[] }
voi d render (Li st object, RenderContext context) {

}

10.10.3 Using GSP to Customize Rendering

Y ou can also customize rendering on a per action basis using Groovy Server Pages (GSP).
For example given the show action mentioned previously:

def show(Book book) {
respond book
}

Y ou could supply ashow xni . gsp file to customize the rendering of the XML.:

<Y%aage content Type="applicati on/xm "%
<book id="${book.id}" title="${book.title}"/>

10.11 Hypermedia asthe Engine of Application State

HATEOAS, an abbreviation for Hypermedia as the Engine of Application State, isa
common pattern applied to REST architectures that uses hypermedia and linking to define
the REST API.

Hypermedia (also called Mime or Media Types) are used to describe the state of a REST
resource, and linkstell clients how to transition to the next state. The format of the response
istypicaly JSON or XML, although standard formats such as Atom and/or HAL are
frequently used.

10.11.1 HAL Support

HAL isastandard exchange format commonly used when developing REST APIs that
follow HATEOAS principals. An example HAL document representing alist of orders can
be seen below:

"_links": {
"self": { "href": "/orders" },
"next": { "href": "/orders?page=2" },
"find": {

"href": "/orders{?id}",
"tenpl ated": true

¥,

"admin": [{
"href": "/adm ns/2",
"title": "Fred"
"href": "/adm ns/5",
"title": "Kate"

H

";:urrent | yProcessing": 14,
"shi ppedToday": 20,

" _enbedded": {
"order": [{
"_links": {

"self": { "href": "/orders/123" },
"basket": { "href": "/baskets/98712" },
"custoner”: { "href": "/customers/7809" }

}

“total ": 30. 00,
"currency": "USD',
"status": "shi pped"

"_links": {
"self": { "href": "/orders/124" },
"basket": { "href": "/baskets/97213" },
"custoner": { "href": "/custoners/12369" }

}

"total ": 20.00,
"currency": "USD',
"status": "processing"

}H
}
}

Exposing Resour ces Using HAL

To return HAL instead of regular JSON for a resource you can simply override the renderer
in grai | s-app/ conf/spring/resources. gr oovy with an instance of
grails.rest.render. hal . Hal JsonRender er (or Hal xm Renderer fOr the XML Variation):

import grails.rest.render.hal.*
beans = {

hal BookRender er (Hal JsonRenderer, rest.test. Book)
}

http://en.wikipedia.org/wiki/HATEOAS
http://tools.ietf.org/html/rfc4287
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

Y ou will also need to update the acceptable response formats for the resource so that the
HAL format isincluded. Not doing so will result in a406 - Not Acceptable response being
returned from the server.

This can be done by setting the f or mat s attribute of the resour ce transformation:

inmport grails.rest.*

@Resource(uri="/books', formats=['json', 'xnl', "hal'])
cl ass Book {

}

Or by updating the r esponseror mat s in the controller:
cl ass BookControll er extends Restful Controller {
static responseFormats = ['json', 'xm', 'hal']

...
}

With the bean in place requesting the HAL content type will return HAL:

$ curl -i -H "Accept: application/hal+json" http://|ocal host: 8080/ books/ 1

HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1
Cont ent - Type: application/ hal +j son; char set =I SO 8859- 1

"_links": {
"sel f":
"href": "http://Ilocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/hal +j son"

3,
“title": "\"The Stand\""
}

Touse HAL XML format simply change the renderer:

inport grails.rest.render.hal.*
beans = {

hal BookRender er (Hal Xnml Renderer, rest.test. Book)
}

Rendering Collections Using HAL

To return HAL instead of regular JSON for alist of resources you can simply override the
renderer in grai | s-app/ conf/spring/ resources. gr oovy with an instance of

grails.rest.render. hal . Hal JsonCol | ecti onRenderer .

import grails.rest.render.hal.*
beans = {

hal BookCol | ecti onRender er (Hal JsonCol | ecti onRenderer, rest.test.Book)
}

With the bean in place requesting the HAL content type will return HAL :

$ curl -i -H "Accept: application/hal+json" http://|ocal host: 8080/ books
HTTP/ 1.1 200 OK

Server: Apache-Coyote/1.1

Cont ent - Type: application/ hal +j son; char set =UTF- 8

Transfer-Encodi ng: chunked

Date: Thu, 17 Cct 2013 02:34:14 GVI

{
"_links": {
"sel f": {
"href": "http://local host: 8080/ books",

"hreflang": "en",
"type": "application/hal +j son"

H
" _enbedded": {

"book": [
{
"_links": {
"self": {
"href": "http://Iocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/hal +j son"
e
"title": "The Stand"
},
{
"_links": {
"sel f":
"href": "http://1ocal host: 8080/ books/ 2",
"hreflang": "en",
"type": "application/hal +j son"
I
"title": "Infinite Jest"
}
{
"_links": {
"sel f": {
"href": "http://Iocal host: 8080/ books/ 3",
"hreflang": "en",
"type": "application/hal + son"

e
"title": "Wal den”
}
|
}
}

Notice that the key associated with the list of sook Objectsin the rendered JSON is book Which
is derived from the type of objectsin the collection, namely sook. In order to customize the
value of thiskey assign avalue to the col 1 ecti onname property on the rai ssoncol 1 ect i onRender er
bean as shown below:

inmport grails.rest.render.hal.*

beans = {
hal BookCol | ecti onRender er (Hal Col | ecti onJsonRenderer, rest.test.Book) {
col l ecti onName = 'publications'
}
}

With that in place the rendered HAL will look like the following:

$ curl -i -H "Accept: application/hal+json" http://|ocal host: 8080/ books
HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Cont ent - Type: application/ hal +j son; char set =UTF- 8

Transf er - Encodi ng: chunked

Date: Thu, 17 COct 2013 02:34:14 GVIT

{
"_links": {
"sel f":
“href": "http://]ocal host: 8080/ books",
"hreflang": "en",
"type": "application/hal +j son"

}
"_enbedded": {
"publications": [

{
"_links": {
"self": {
"href": "http://1ocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/hal + son"
}

itle": "The Stand"

{

"_links": {

"self": {
"href": "http://1ocal host: 8080/ books/ 2",
"hreflang": "en",
"type": "application/hal + son"
"title": "Infinite Jest"
1
{
"_links": {
"sel f": {
"href": "http://Iocal host: 8080/ books/ 3",
"hreflang": "en",
"type": "application/hal + son"

e
"title": "Wal den”

]
}
}

Using Custom Media/ Mime Types

If you wish to use a custom Mime Type then you first need to declare the Mime Typesin

grail s-app/ conf/application. groovy.

grails.mme.types = [
all: Y B
book: "appl i cation/vnd. books. or g. book+j son",
bookLi st: "application/vnd. books. org. bookl i st +j son",

Itiscritical that place your new mime types after the 'all' Mime Type because if the
Content Type of the request cannot be established then the first entry in the map is used for
the response. If you have your new Mime Type at the top then Grails will always try and
send back your new Mime Typeif the requested Mime Type cannot be established.

Then override the renderer to return HAL using the custom Mime Types.

inmport grails.rest.render.hal.*
inport grails.web.mne. *

beans = {
hal BookRender er (Hal JsonRenderer, rest.test.Book, new M neType("application/vnd. books. org. book+j son", [v:"1.0"]))
hal BookLi st Render er (Hal JsonCol | ecti onRenderer, rest.test.Book, new M neType("application/vnd. books. org. bookl i st +j sc

}

In the above example the first bean definesa HAL renderer for a single book instance that
returns a Mime Type Of appl i cat i on/ vnd. books. or g. book+j son. The second bean defines the
Mime Type used to render a collection of books (in this case

appl i cation/vnd. books. or g. bookl i st +j son).

appl i cati on/vnd. books. or g. bookl i st +j son isan example of amedia—range(
http://www.w3.0rg/Protocol /rfc2616/rfc2616.html - Header Field Definitions). This
example uses entity (book) and operation (list) to form the media-range values but in
reality, it may not be necessary to create a separate Mime type for each operation. Further,
it may not be necessary to create Mime types at the entity level. See the section on
"Versioning REST resources' for further information about how to define your own Mime

types.

With thisin place issuing arequest for the new Mime Type returns the necessary HAL :

$ curl -i -H "Accept: application/vnd. books. org. book+j son" http://|ocal host: 8080/ books/1

http://www.w3.org/Protocols/rfc2616/rfc2616.html

HTTP/ 1.1 200 K
Server: Apache-Coyote/1.1
Cont ent - Type: application/vnd. books. org. book+j son; char set =I SO 8859- 1

{

"_links": {
"self": {
"href": "http://I|ocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/vnd. books. org. book+j son"

b,
"title": "\"The Stand\""
}

Customizing Link Rendering

An important aspect of HATEOAS is the usage of links that describe the transitions the
client can use to interact with the REST API. By default the rai ssonrender er Will
automatically create links for you for associations and to the resource itself (using the "self"
relationship).

However you can customize link rendering using the 1i nk method that is added to al domain
classes annotated with grails.rest.Resource OF any class annotated with grails.rest.Linkable.
For example, the show action can be modified as follows to provide anew link in the
resulting output:

def show(Book book) {
book.link rel:"'publisher', href: g.createLink(absolute: true, resource:"publisher", parans:[bookld: book.id])
respond book

}

Which will result in output such as:

e,
"_links": {
"sel f": {
"“href": "http://]ocal host: 8080/ books/ 1",
"hreflang": "en",
"type": "application/vnd. books. or g. book+j son"

}

"publisher": {
"href": "http://1ocal host: 8080/ books/ 1/ publ i sher",
"hreflang": "en"

}
b
"title": "\"The Stand\""

The i nk method can be passed named arguments that match the properties of the
grails.rest.Link class.

10.11.2 Atom Support

Atom is another standard interchange format used to implement REST APIs. An example of
Atom output can be seen below:

<?xm version="1.0" encodi ng="utf-8"?>
<feed xm ns="http://ww. w3. or g/ 2005/ At ont' >

<title>Exanpl e Feed</title>
<link href="http://exanple.org/"/>
<updat ed>2003- 12- 13T18: 30: 02Z</ updat ed>
<aut hor >
<nane>John Doe</ nane>
</ aut hor >
<i d>urn: uui d: 60a76c80- d399- 11d9- b93C- 0003939e0af 6</i d>

<entry>
<title>At om Power ed Robots Run Anpk</title>

http://tools.ietf.org/html/rfc4287

<link href="http://exanple.org/ 2003/ 12/ 13/ at onD3"/ >
<i d>ur n: uui d: 1225c695- cf b8- 4ebb- aaaa- 80da344ef aba</i d>
<updat ed>2003- 12- 13T18: 30: 02Z</ updat ed>
<sunmar y>Some text. </ summary>
</entry>

</ f eed>

To use Atom rendering again simply define a custom renderer:

import grails.rest.render.atom?*
beans = {
hal BookRender er (At onRender er, rest.test.Book)
hal BookLi st Render er (At onCol | ecti onRenderer, rest.test.Book)

10.11.3Vnd.Error Support

Vnd.Error is astandardised way of expressing an error response.

By default when avalidation error occurs when attempting to POST new resources then the
errors object will be sent back allow with a 422 respond code:

$ curl -i -H "Accept: application/json" -H "Content-Type: application/json" -X POST -d "" http://|ocal host: 8080/ books

HTTP/ 1.1 422 Unprocessable Entity
Server: Apache-Coyote/1.1
Cont ent - Type: application/json;charset=l SO 8859-1

{
"errors": [
e,
"object": "rest.test.Book",
“field": "title",
"rej ected-value": null,
"message": "Property [title] of class [class rest.test.Book] cannot be null"
}
]
}

If you wish to change the format to Vnd.Error then simply register

grails.rest.render. errors. VndErrorJsonRender er beanin grail s-app/ conf/spring/resources. groovy.

beans = {
vndJsonError Renderer (grails.rest.render. errors. VndErrorJsonRenderer)
/1 for Vnd.Error XM. format
vndXm Error Renderer(grails.rest.render.errors. VndError Xl Render er)

}

Then if you alter the client request to accept Vnd.Error you get an appropriate response:

$ curl -i -H "Accept: application/vnd.error+json,application/json" -H "Content-Type: application/json" -X POST -d "" ht
HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Cont ent - Type: application/vnd. error+json; charset =l SO 8859-1

[

{
"l ogref": "book.null able, "message”: "Property [title] of class [class rest.test.Book] cannot be null",
"_links": {
"resource": {
"href": "http://1ocal host: 8080/ rest-test/books"
}
}
}

10.12 Customizing Binding of Resour ces

The framework provides a sophisticated but simple mechanism for binding REST requests
to domain objects and command objects. One way to take advantage of thisisto bind the

https://github.com/blongden/vnd.error

request property in acontroller the properties Of adomain class. Given the following XML as
the body of the request, the creat eBook action will create a new sook and assign "The Stand” to
thetitie property and " Stephen King" to the aut hor name property.

<?xm version="1.0" encodi ng="UTF-8"?>
<book>
<title>The Stand</title> <aut hor Name>St ephen Ki ng</ aut hor Name> </ book>

cl ass BookController {

def createBook() {
def book = new Book()
book. properties = request

...
}

Command objects will automatically be bound with the body of the request:

cl ass BookController {
def creat eBook(BookComand book) {

...
}

cl ass BookCommand {
String title
String aut hor Nane
}

If the command object type is a domain class and the root element of the XML document
contains an i ¢ attribute, thei ¢ value will be used to retrieve the corresponding persistent
instance from the database and then the rest of the document will be bound to the instance.
If no corresponding record isfound in the database, the command object reference will be
null.

<?xm version="1.0" encodi ng="UTF-8"?>
<book id="42">
<title>Walden</title> <aut hor Name>Henry Davi d Thor eau</ aut hor Nane> </ book>

cl ass BookController {
def updat eBook(Book book) {
/1 The book will have been retrieved fromthe database and updated
/1 by doing sonething like this:
/1
/1 book == Book.get('42")
/1 if(book !'= null) {
/1 book. properties = request
11}
/1
/1 the code above represents what the framework will
/'l have done. There is no need to wite that code.

...
}

The data binding depends on an instance of the DataBindingSource interface created by an
instance of the DataBindingSourceCreator interface. The specific implementation of

Dat aBi ndi ngSour ceCr eat or will be selected based on the cont ent Type of the request. Several
implementations are provided to handle common content types. The default
implementations will be fine for most use cases. The following table lists the content types
which are supported by the core framework and which pat asi ndi ngsour cecr eat or
implementations are used for each. All of the implementation classes arein the

org. grails. dat abi ndi ng. bi ndi ngsour ce package

DataBindingSour ceCr eator

http://docs.grails.org/3.3.8/api/grails/databinding/DataBindingSource.html
http://docs.grails.org/3.3.8/api/org/grails/databinding/bindingsource/DataBindingSourceCreator.html

Content Type(s) Bean Name Impl.

application/xml,

xmiDataBindingSourceCreator ~ XmlDataBindingSourceCreator
text/xml

application/json,

text/json jsonDataBindingSourceCreator JsonDataBindingSourceCreator

application/hal+json halJsonDataBindingSourceCreator Hal JsonDataBindingSourceCreator

application/hal+xml halXmlDataBindingSourceCreator Hal X mIDataBindingSourceCreator

In order to provide your own pat agi ndi ngsour cecr eat or fOr any of those content types, write a
class which implements pat asi ndi ngsour cecreat or @Nnd register an instance of that classin the
Spring application context. If you are replacing one of the existing helpers, use the
corresponding bean name from above. If you are providing a helper for a content type other
than those accounted for by the core framework, the bean name may be anything that you
like but you should take care not to conflict with one of the bean names above.

The pat aBi ndi ngSour cecr eat or iNnterface defin&just 2 methods:

package org. grails. databi ndi ng. bi ndi ngsource

inport grails.web.nmme. MneType
import grails. databi ndi ng. Dat aBi ndi ngSour ce

[** * A factory for DataBindingSource instances * * @ince 2.3 * @ee Dat aBi ndi ngSour ceRegi stry * @ee Dat aBi ndi ngSour c
interface DataBi ndi ngSourceCreator {

[** * “return Al of the {"link MneType} supported by this hel per */
M meType[] getM neTypes()

/** * Creates a DataBi ndi ngSource suitable for binding bindingSource to bindingTarget * * @aramnm neType a mine ty
Dat aBi ndi ngSour ce creat eDat aBi ndi ngSour ce(M neType mi neType, Object bindi ngTarget, Object bindi ngSource)

}

AbstractRequestBodyDataBindingSourceCreator is an abstract class designed to be
extended to simplify writing custom pat asi ndi ngSour cecreat or Classes. Classes which extend
Abst r act Request bodyDat abi ndi ngSour ceCr eat or Need to |mplement amethod named

cr eat eBi ndi ngSour ce which accepts an I nput Streamas an argument and returns a pat aBi ndi ngSour ce
aswell as Impl ementing the get M neTypes method described in the pat asi ndi ngSour ceCr eat or
interface above. The i nput streamargument to cr eat eBi ndi ngsour ce Provides access to the body
of the request.

The code below shows a simple implementation.

src/main/groovy/com/demo/myapp/databinding/MyCustomDataBindingSourceCreator.groovy
package com deno. nyapp. dat abi ndi ng

import grails.web.mne. MnmeType

i mport grails. dat abi ndi ng. Dat aBi ndi ngSour ce

i nport org...databinding. Si npl eMapDat aBi ndi ngSour ce

i mport org...databi ndi ng. bi ndi ngsour ce. Abstract Request BodyDat aBi ndi ngSour ceCr eat or

/** * A cust om Dat aBi ndi ngSour ceCreat or capabl e of parsing key value pairs out of * a request body containing a comm s
cl ass MyCust onDat aBi ndi ngSour ceCr eat or ext ends Abstract Request BodyDat aBi ndi ngSour ceCr eat or {

http://docs.grails.org/3.3.8/api/org/grails/web/databinding/bindingsource/AbstractRequestBodyDataBindingSourceCreator.html

@verride
public M neType[] getM meTypes() {
[new M neType('text/customrdenp+csv')] as M neType[]

}
@verride
protect ed Dat aBi ndi ngSour ce creat eBi ndi ngSour ce(| nput Stream i nput Stream {
def map = [:]
def reader = new | nput StreanReader (i nput Strean)
/1 this is an obviously naive parser and is intended
/1 for denonstration purposes only.
reader. eachLine { line ->
def keyValuePairs = line.split(',")
keyVal uePai rs. each { keyVal uePair ->
if(keyValuePair?.trim()) {
def keyVal uePi eces = keyVal uePair.split(':")
def key = keyVal uePi eces[0].trin()
def value = keyVal uePi eces[1].trim()
map<<key>> = val ue
}
}
}
/1 create and return a DataBi ndi ngSource whi ch contains the parsed data
new Si npl eMapDat aBi ndi ngSour ce(map)
}

}

An instance of wcust ondat asour cereat or NEEAS to be registered in the spring application
context.

grail s-app/conf/spring/resources.groovy
beans = {
nmyCust onCr eat or com denp. nyapp. dat abi ndi ng. MyCust onDat aBi ndi ngSour ceCr eat or

...
}

With that in place the framework will use the nycust ontr eat or bean any time a

Dat aBi ndi ngSour ceCr eat or is needed to deal with a request which has a cont ent Type of
"text/custom+demo-+csv”.

10.13 RSS and Atom

No direct support is provided for RSS or Atom within Grails. Y ou could construct RSS or
ATOM feeds with the render method’s XML capability.

11 Asynchronous Programming

With modern hardware featuring multiple cores, many programming languages have been
adding asynchronous, parallel programming APIs, Groovy being no exception.

Popular asynchronous libraries include:

® RxJava- http://reactivex.io

® GPars- http://gpars.org

http://reactivex.io
http://gpars.org

® Reactor - https://projectreactor.io

By building ontop of these various libraries the The Async features of Grails aim to simplify
concurrent programming within the framework and include the concept of Promises and a
unified event model.

In general since the Reactive programming model is an evolving space Grailstriesto
provide generic support for integrating a range of asynchronous libraries and doesn’t
recommend any single library asthey all have various advantages and disadvantages.

For more information on Asynchronous programming with Grails see the user guide for the
Grails Asynchronous Framework.

12 Validation

Grails validation capability is built on Spring’'s Validator API and data binding capabilities.
However Grails takes this further and provides a unified way to define validation
"constraints" with its constraints mechanism.

Constraints in Grails are away to declaratively specify validation rules. Most commonly
they are applied to domain classes, however URL Mappings and Command Objects also
support constraints.

12.1 Declaring Constraints

Within adomain class constraints are defined with the constraints property that is assigned a
code block:

class User {
String login
String password
String enuil
I nt eger age

static constraints = {

_—
}

Y ou then use method calls that match the property name for which the constraint appliesin
combination with named parameters to specify constraints:

class User {

static constraints = {

login size: 5..15, blank: false, unique: true
password size: 5..15, blank: false
emai|l email: true, blank: false

age nmin: 18
}
}

In this example we' ve declared that the 1 ogi n property must be between 5 and 15 characters
long, it cannot be blank and must be unique. We' ve also applied other constraints to the
password, emi | and age properties.

https://projectreactor.io
https://async.grails.org
https://async.grails.org
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/package-summary.html

By default, all domain class properties are not nullable (i.e. they have an implicit nui 1 abl e:
fal se CONstraint).

A complete reference for the available constraints can be found in the Quick Reference
section under the Constraints heading.

Note that constraints are only evaluated once which may be relevant for a constraint that
relieson avalue like an instance of j ava. utii . pate.

class User {

static constraints = {
/1 this Date object is created when the constraints are eval uated, not
/1 each tine an instance of the User class is validated.
bi rthDate max: new Date()

}
}

A word of warning - referencing domain class properties from constraints

It'svery easy to attempt to reference instance variables from the static constraints block, but
thisisn’t legal in Groovy (or Java). If you do so, you will get am ssi ngpr oper t yExcept i on fOr
your trouble. For example, you may try

cl ass Response {
Survey survey
Answer answer

static constraints = {

survey bl ank: false
answer bl ank: false, inList: survey.answers

}

See how theinLi st constraint references the instance property survey? That won't work.
Instead, use a custom validator:

cl ass Response {

static constraints = {
survey bl ank: false
answer blank: false, validator: { val, obj -> val in obj.survey.answers }

}
}

In this example, the obj argument to the custom validator is the domain instance that is being
validated, so we can access its survey property and return a boolean to indicate whether the
new value for the answer property, vai, isvalid.

12.2 Validating Constraints

Validation Basics

Call the validate method to validate a domain class instance:

def user = new User (parans)

if (user.validate()) {
/1 do something with user
}

el se {
user.errors.all Errors. each {
println it

}
}

Theerrors property on domain classesis an instance of the Spring Errorsinterface. The
Errors iNterface provides methods to navigate the validation errors and also retrieve the
origina values.

Validation Phases

Within Grails there are two phases of validation, the first one being data binding which
occurs when you bind request parameters onto an instance such as:

def user = new User (parans)

At this point you may already have errorsin the errors property due to type conversion (such
as converting Strings to Dates). Y ou can check these and obtain the original input value
usi ng theerrors API:

if (user.hasErrors()) {
if (user.errors.hasFieldErrors("login")) {
println user.errors.getFieldError("login").rejectedVal ue

}

The second phase of validation happens when you call validate or save. Thisiswhen Grails
will validate the bound values against the constraints you defined. For example, by default
the save method callsval i dat e before executing, allowing you to write code like:

if (user.save()) {
return user
}

el se {
user.errors.all Errors. each {
printinit
}

}

12.3 Sharing Constraints Between Classes

A common pattern in Grailsis to use Command Objects for validating user-submitted data
and then copy the properties of the command object to the relevant domain classes. This
often means that your command objects and domain classes share properties and their
constraints. Y ou could manually copy and paste the constraints between the two, but that’s a
very error-prone approach. Instead, make use of Grails global constraints and import
mechanism.

Global Constraints

In addition to defining constraints in domain classes, command objects and other
validateable C|aSSGS, yOou can also definethem in grail s-app/ conf/application. groovy.

grails.gormdefault.constraints = {
"*'(null able: true, size: 1..20)
nyShared(nul | abl e: fal se, blank: false)

}

These constraints are not attached to any particular classes, but they can be easily referenced
from any validateable class:

class User {

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/Errors.html

static constraints = {
I ogin shared: "nyShared"

}
}

Note the use of the shared argument, whose value is the name of one of the constraints
defined ingraiis. gorm defaul t. const rai nts. Despite the name of the configuration setting, you
can reference these shared constraints from any validateable class, such as command
objects.

The ™' constraint is a special case: it means that the associated constraints ('nullable’ and
'size' in the above example) will be applied to al propertiesin all validateable classes. These
defaults can be overridden by the constraints declared in a validateable class.

Importing Constraints

Grails 2 introduced an alternative approach to sharing constraints that allows you to import a
set of constraints from one class into another.

Let’s say you have adomain class like so:

class User {
String firstNane
String | ast Name
String passwordHash

static constraints = {
first Name bl ank: false, nullable: false
| ast Nane bl ank: false, nullable: false
passwor dHash bl ank: false, nullable: false

}

Y ou then want to create a command object, user command, that shares some of the properties of
the domain class and the corresponding constraints. Y ou do this with the i npor t Fron()
method:

cl ass User Command {
String firstName
String | ast Name
String password
String confirnPassword

static constraints = {
i mport From User

password bl ank: false, nullable: false
confirnPassword bl ank: false, nullable: false

}
}

Thiswill import al the constraints from the user domain class and apply them to user command.
The import will ignore any constraints in the source class (user) that don’t have
corresponding propertiesin the importing class (user command). [N the above example, only the
firstName' and 'lastName' constraints will be imported into user command because those are the
only properties shared by the two classes.

If you want more control over which constraints are imported, use the i nci ude and exci ude
arguments. Both of these accept alist of simple or regular expression strings that are
matched against the property names in the source constraints. So for example, if you only
wanted to import the 'lastName' constraint you would use:

static constraints = {

i mport From User, include: ["]astNane"]

}

or if you wanted all constraints that ended with ‘Name':

static constraints = {
i mport From User, include: [/.*Nane/]

}

Of course, excl ude does the reverse, specifying which constraints should not be imported.

12.4 Validation on the Client
Displaying Errors

Typicaly if you get avalidation error you redirect back to the view for rendering. Once
there you need some way of displaying errors. Grails supports arich set of tags for dealing
with errors. To render the errors as alist you can use renderErrors:

<g:render Errors bean="${user}" />

If you need more control you can use hasErrors and eachError:

<g: hasErrors bean="${user}">

<g: eachError var="err" bean="${user}">
${err}
</ g: eachError>

</ g: hasErrors>

Highlighting Errors

It is often useful to highlight using ared box or some indicator when afield has been
incorrectly input. This can aso be done with the hasErrors by invoking it as a method. For
example:

<div class='val ue ${hasErrors(bean:user,field:'login,6 ‘errors')}'>
<i nput type="text" name="l|ogin" val ue="${fiel dval ue(bean: user,field:"login')}"/>
</ di v>

This code checksif thei ogi n field of the user bean has any errorsand if so it addsan errors
CSS class to the di v, allowing you to use CSSrules to highlight the di v.

Retrieving Input Values

Each error is actually an instance of the FieldError classin Spring, which retains the original
input value within it. Thisis useful as you can use the error object to restore the value input
by the user using the fieldValue tag:

<input type="text" nane="login" value="${fiel dVal ue(bean:user,field:'login)}"/>

This code will check for an existing i el derror in the user bean and if there is obtain the
originally input value for the 1 ogi n field.

http://gsp.grails.org/latest/ref/Tags/renderErrors.html
http://gsp.grails.org/latest/ref/Tags/hasErrors.html
http://gsp.grails.org/latest/ref/Tags/eachError.html
http://gsp.grails.org/latest/ref/Tags/hasErrors.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/FieldError.html

12.5 Validation and I nternationalization

Another important thing to note about errorsin Grailsis that error messages are not hard
coded anywhere. The FieldError classin Spring resolves messages from message bundles
using Grails' 118n support.

Constraints and M essage Codes

The codes themselves are dictated by a convention. For example consider the constraints we
looked at earlier:

package com nyconpany. myapp

class User {

static constraints = {
login size: 5..15, blank: false, unique: true
password size: 5..15, blank: false
emai|l email: true, blank: false
age nmin: 18

—~

If aconstraint isviolated, Grails looks by convention for a message code:

Constraint Error Code

M cl assNane. propert yNane. bl ank

creditCard cl assNare. propertyNane. credit Card.invalid
email cl assNane. propertyNane. emai | . invalid
inList cl assNane. propertyNane. not. i nLi st
matches cl assNane. propert yNane. mat ches. i nvalid
max cl assNane. propert yNane. max. exceeded
maxSize cl assName. pr oper t yNanme. maxSi ze. exceeded
ﬁ cl assNane. propert yNane. ni n. not net

minSize cl assNare. propert yNane. mi nSi ze. not met

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/validation/FieldError.html

notEguaI cl assNare. pr opert yNane. not Equal

nullable cl assNane. propertyNane. nul | abl e

cl assNane. propert yNane. range. t oosmal | OF

@g@ cl assNane. propert yNane. r ange. t oobi g

gze cl assNane. propert yNane. si ze. t oosmal | OF

- cl assNane. propert yNane. si ze. t oobi g

unique cl assNane. pr opert yNane. uni que

U_I’| cl assNane. propertyNane. url.invalid

validator cl assnare. proper tyName. + String returned by

Closure

In the case of the bl ank constraint thiswould be user . 1 ogi n. bl ank SO you would need a message
such as the followi ng in YOUr grail s-app/i 18n/ messages. properties file:

user. | ogi n. bl ank=Your |ogin name nust be specified!

The class name is looked for both with and without a package, with the packaged version
taki ng precedence. So for example, com nyconpany. myapp. User . | ogi n. bl ank will be used before
user . 1 ogi n. bl ank. Thisallows for cases where your domain class message codes clash with a
plugin’s.

For areference on what codes are for which constraints refer to the reference guide for each
constraint (e.g. blank).

Displaying M essages

The renderErrors tag will automatically look up messages for you using the message tag. If
you need more control of rendering you can handle this yourself:

<g: hasErrors bean="${user}">

<g: eachError var="err" bean="${user}">
<g: message error="${err}" /></1i>
</ g: eachError>
</ ul >
</ g: hasErrors>

In this example within the body of the eachError tag we use the message tag in combination
with itserror argument to read the message for the given error.

http://gsp.grails.org/latest/ref/Tags/renderErrors.html
http://gsp.grails.org/latest/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/eachError.html
http://gsp.grails.org/latest/ref/Tags/message.html

12.6 Applying Validation to Other Classes

Domain classes and Command Objects support validation by default. Other classes may be
made validateable by defining the static const rai nts property in the class (as described above)
and then telling the framework about them. It isimportant that the application register the
validateabl e classes with the framework. Simply defining the const rai nts property is not
sufficient.

The Validateable Trait

Classes which define the static const rai nts property and implement the Validateable trait will
be validateable. Consider this example:

src/main/groovy/com/mycompany/myapp/User.groovy
package com nyconpany. nyapp
inmport grails.validation.Validateable

class User inplenments Validateable {

static constraints = {
login size: 5..15, blank: false, unique: true
password size: 5..15, blank: false
email email: true, blank: false
age min: 18
}
}

Programmatic access

Accessing the constraints on a validateable object is dlightly different. Y ou can access a
command object’ s constraints programmatically in another context by accessing the
const rai nt svap Static property of the class. That property is an instance of map<stri ng,

Const r ai nedPr operty>

In the example above, accessing user . const rai nt shap. 1 ogi n. bl ank Would yield t ai se, while
User . const rai nt sMap. | ogi n. uni que would yleld true.

13 The Service Layer

Grails defines the notion of a service layer. The Grails team discourages the embedding of
core application logic inside controllers, asit does not promote reuse and a clean separation
of concerns.

Servicesin Grails are the place to put the majority of the logic in your application, leaving
controllers responsible for handling request flow with redirects and so on.

Creating a Service

Y ou can create a Grails service by running the create-service command from the root of
your project in aterminal window:

grails create-service helloworld.sinple

If no package is specified with the create-service script, Grails automatically uses the

http://docs.grails.org/3.3.8/api/grails/validation/Validateable.html
http://docs.grails.org/3.3.8/api/grails/validation/ConstrainedProperty.html

grails. def aul t Package defined in grails-app/conf/application.ym asthe package name.

The above example will create a service at the location
grail s-app/ servi ces/ hel | owor | d/ Si npl eSer vi ce. groovy. A service' s name ends with the convention
servi ce, Other than that a service is a plain Groovy class:

package hel | oworl d

class SinpleService {

}

13.1 Declar ative Transactions

Declar ative Transactions

Services are typically involved with coordinating logic between domain classes, and hence
often involved with persistence that spans large operations. Given the nature of services,
they frequently require transactional behaviour. Y ou can use programmatic transactions with
the withTransaction method, however thisis repetitive and doesn’t fully leverage the power
of Spring’s underlying transaction abstraction.

Services enabl e transaction demarcation, which is a declarative way of defining which
methods are to be made transactional. To enable transactions on a service use the
Transactional transform:

import grails.gormtransactions.*

@r ansact i onal
class CountryService {

}

Theresult isthat all methods are wrapped in a transaction and automatic rollback occursif a
method throws an exception (both Checked or Runtime exceptions) or an Error. The
propagation level of the transaction is by default set to PROPAGATION_REQUIRED.

Version Grails 3.2.0 was the first version to use GORM 6 by default. Checked exceptions
did not roll back transactions before GORM 6. Only a method which threw aruntime
exception (i.e. one that extends RuntimeException) rollbacked a transaction.

Warning: dependency injection is the only way that declarative transactions work. Y ou
will not get atransactional service if you use the new Operator such as new Bookser vi ce()

The Transactional annotation vsthe transactional property

In versions of Grails prior to Grails 3.1, Grails created Spring proxies and used the
transactional Property to enable and disable proxy creation. These proxies are disabled by
default in applications created with Grails 3.1 and above in favor of the @ ansacti onal
transformation.

For versions of Grails 3.1.x and 3.2.x, if you wish to renable this feature (not recommended)
then you must Set grai i s. spring. transacti onManagenent 10 true or remove the configuration in
grails-app/conf/application.ym OF grails-app/conf/application.groovy.

In Grails 3.3.x Spring proxies for transaction management has been dropped completely,
and you must use Grails AST transforms. In Grails 3.3.x, if you wish to continue to use

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

Spring proxies for transaction management you will have to configure them manually, using
the appropriate Spring configuration.

In addition, prior to Grails 3.1 services were transactional by default, as of Grails 3.1 they
are only transactional if the @ransactionai transformation is applied.

Custom Transaction Configuration

Grails also provides @r ansacti onal @aNd @wt Transact i onal @annotations for cases where you need
more fine-grained control over transactions at a per-method level or need to specify an
alternative propagation level. For example, the @wt Transacti onal @annotation can be used to
mark a particular method to be skipped when a class is annotated with @rr ansact i onal .

Annotating a service method with transactional disables the default Grails transactional
behavior for that service (in the same way that adding tr ansact i onal =f al se do€s) S0 if you
use any annotations you must annotate all methods that require transactions.

In this example 1 st Books USeS a read-only transaction, updat eook USES a default read-write
transaction, and del et eBook IS NOt transactional (probably not a good idea given its name).

inport grails.gormtransactions. Transacti onal
cl ass BookService {

@ransactional (readOnly = true)
def 1istBooks() {

Book. | i st ()
}

@r ansact i onal
def updat eBook() {
1.

}

def del et eBook() {
...

}
}

Y ou can also annotate the class to define the default transaction behavior for the whole
service, and then override that default per-method:

inport grails.gormtransactions. Transacti onal

@r ansacti onal
cl ass BookService {

def IistBooks() {
Book. li st ()
}

def updat eBook() {
...

def del et eBook() {
...

}
}

This version defaults to al methods being read-write transactional (due to the class-level
annotation), but the i st Books method overrides this to use aread-only transaction:

inport grails.gormtransactions. Transacti onal

@r ansact i onal
cl ass BookService {

@ransactional (readOnly = true)

def IistBooks() {
Book. li st ()

}

def updat eBook() {
1.

}

def del et eBook() {
I

}

}

Although updat eBook and del et eBook aren’t annotated in this example, they inherit the
configuration from the class-level annotation.

For more information refer to the section of the Spring user guide on Using @Transactional.

Unlike Spring you do not need any prior configuration to USe Transact i onal ; just specify the
annotation as needed and Grails will detect them up automatically.

Transaction status

Aninstance of TransactionStatus is available by default in Grails transactional service
methods.

Example:

inport grails.gormtransactions. Transacti onal

@r ansact i onal
cl ass BookService {

def del et eBook() {
transacti onSt atus. set Rol | backOnl y()

13.1.1 Transactions and Multi-DataSour ces

Given two domain classes such as;

class Mvie {
String title

cl ass Book {
String title

static mapping = {
dat asour ce ' books'
}

}

Y ou can supply the desired data source to @ ansacti onal OF @eadonl y @annotations.

inport grails.gormtransactions. ReadOnly
inmport grails.gormtransactions. Transacti onal
i nport groovy.transform ConpileStatic

@Conpi | eStatic
cl ass BookService {

@ReadOnl y(' books")

Li st <Book> findAll () {
Book. where {}.findAll ()
}

@ransactional (' books')

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/transaction.html#transaction-declarative-annotations
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/TransactionStatus.html

voi d save(String title) {
Book book = new Book(title: title)
book. save()
book

}
}

@onpi | eStatic
cl ass MyvieService {

@ReadOnl y
Li st<Movi e> findAll () {

Movi e. where {}.findAll ()
}

}

13.1.2 Transactions Rollback and the Session

Under standing Transactions and the Hiber nate Session

When using transactions there are important considerations you must take into account with
regards to how the underlying persistence session is handled by Hibernate. When a
transaction is rolled back the Hibernate session used by GORM is cleared. This means any
objects within the session become detached and accessing uninitialized |azy-loaded
collectionswill lead to aLazyinitializationException.

To understand why it isimportant that the Hibernate session is cleared. Consider the
following example:

class Author {
String nane
I nteger age

static hasMany = [books: Book]
}

If you were to save two authors using consecutive transactions as follows:

Aut hor.wi t hTransaction { status ->
new Aut hor (nanme: "Stephen King", age: 40).save()
status. set Rol | backOnl y()

}

Aut hor . wi t hTransaction { status ->
new Aut hor (nanme: "Stephen King", age: 40).save()
}

Only the second author would be saved since the first transaction rolls back the author save()
by clearing the Hibernate session. If the Hibernate session were not cleared then both author
instances would be persisted and it would lead to very unexpected results.

It can, however, be frustrating to get aLazyinitial i zati onxcept i on due to the session being
cleared.

For example, consider the following example:

cl ass Aut hor Service {

voi d updat eAge(id, int age) {
def author = Author.get(id)
aut hor . age = age
if (author.isTooAd()) {
t hrow new Aut hor Exception("too ol d", author)
}

}
}

class AuthorController {

def aut hor Servi ce
def updat eAge() {
try {
aut hor Ser vi ce. updat eAge(parans.id, parans.int("age"))

}
catch(e) {

render "Author books ${e.author.books}"
}

}

In the above example the transaction will be rolled back if the age of the aut hor age exceeds
the maximum value defined in thei stooa d() method by throwing an aut hor excepti on. The

Aut hor Except i on references the author but when the books association is accessed a

Lazyl nitial i zat i onExcepti on Will be thrown because the underlying Hibernate session has been
cleared.

To solve this problem you have a number of options. One isto ensure you query eagerly to
get the data you will need:

cl ass Aut hor Service {

\./.oid updat eAge(id, int age) {
def author = Author.findByld(id, [fetch:[books:"eager"]])

In this example the books association will be queried when retrieving the aut hor.

Thisisthe optimal solution asit requires fewer queries then the following suggested
solutions.

Another solution isto redirect the request after a transaction rollback:

class AuthorController {
Aut hor Ser vi ce aut hor Servi ce
def updateAge() {
try {
aut hor Ser vi ce. updat eAge(parans.id, parans.int("age"))
catch(e) {

flash. ressage = "Can't update age"
redirect action:"show', id:parans.id

}

In this case a new request will deal with retrieving the autnhor again. And, finaly athird
solution isto retrieve the data for the aut hor again to make sure the session remainsin the
correct state:

cl ass AuthorController {
def aut hor Servi ce
def updateAge() {
try {
aut hor Servi ce. updat eAge(parans.id, parans.int("age"))
}
catch(e) {

def author = Author.read(parans.id)
render "Author books ${author.books}"

}

Validation Errors and Rollback

A common use case isto rollback atransaction if there are validation errors. For example
consider this service:

i mport

grails.validation. Validati onException

cl ass Aut hor Service {

voi

}

Tore
errors

i mport

d updateAge(id, int age) {
def author = Author.get(id)
aut hor . age = age
if (lauthor.validate()) {
throw new Val i dati onException("Author is not valid", author.errors)
}

render the same view that a transaction was rolled back in you can re-associate the
with arefreshed instance before rendering:

grails.validation. Validati onException

class AuthorController {

def

def

aut hor Servi ce

updat eAge() {
try {
aut hor Ser vi ce. updat eAge(parans.id, parans.int("age"))

catch (ValidationException e) {
def author = Author.read(parans.id)
author.errors = e.errors
render view "edit", nodel: [author:author]

13.2 Scoped Services

By default, access to service methods is not synchronised, so nothing prevents concurrent
execution of those methods. In fact, because the service is a singleton and may be used
concurrently, you should be very careful about storing state in a service. Or take the easy
(and better) road and never store state in a service.

Y ou can change this behaviour by placing a service in a particular scope. The supported
SCOpes are:

prototype - A NEW service is created every timeit isinjected into another class
request - A new service will be created per request

f1ash - A new service will be created for the current and next request only
f1ow- INn Web flows the service will exist for the scope of the flow

conversation - [N web flows the service will exist for the scope of the conversation. ie aroot
flow and its sub flows

sessi on - A serviceis created for the scope of auser session

si ngl eton (default) - Only one instance of the service ever exists

If your ServiceiStiash, f1ow O conversation Scoped it must implementj ava.io. Serializable

and can only be used in the context of a Web Flow.

To enable one of the scopes, add a static scope property to your class whose value is one of
the above, for example

static scope = "flow'

Upgrading

Starting with Grails 2.3, new applications are generated with configuration that defaults the
scope of controllersto singi et on. If singl et on cONtrollersinteract with prot ot ype SCOped
services, the services effectively behave as per-controller singletons. If non-singleton
services are required, controller scope should be changed as well.

See Controllers and Scopes in the user guide for more information.

Lazy initialization

Y ou can also configure whether the service islazily initialized. By default, thisis set to tr ue,
but you can disable this and make initialization eager with the 1 azyini t property:

static lazylnit = fal se

13.3 Dependency Injection and Services
Dependency Injection Basics

A key aspect of Grails servicesisthe ability to use Spring Framework's dependency
injection features. Grails supports "dependency injection by convention”. In other words,
you can use the property name representation of the class name of a service to automatically
inject them into controllers, tag libraries, and so on.

As an example, given aservice called sookser vi ce, if you define a property called bookser vi ce
in acontroller asfollows:

cl ass BookController {
def bookService

}

In this case, the Spring container will automatically inject an instance of that service based
on its configured scope. All dependency injection is done by name. Y ou can also specify the
type asfollows:

cl ass Aut hor Service {
BookSer vi ce bookServi ce
}

NOTE: Normally the property name is generated by lower casing the first letter of the
type. For example, an instance of the sookser vi ce class would map to a property named

bookServi ce.

To be consistent with standard JavaBean conventions, if the first 2 |etters of the class name
are upper case, the property name is the same as the class name. For example, the property
name of the Joecrel per Servi ce class would be jpecrel per Ser vi ce, NOL j DBCHel per Ser vi ce OF

http://www.springframework.org/

j dbcHel per Servi ce.

See section 8.8 of the JavaBean specification for more information on de-capitalization
rules.

Only the top level object is subjected to injection as traversing all nested objectsto
perform injection would be a performance issue.

Be careful when injecting the non-default datasources. For example, using this config:

dat aSour ces:
dat aSour ce:
pool ed: true
j mxExport: true

secondary:
pool ed: true
j mExport: true

Y ou can inject the primary dat asour ce like you would expect:

cl ass BookSqgl Service {

def dataSource

}

But to inject the secondary datasource, you have to use Spring’ s Aut owi red injection or

resour ces. gr oovy.

cl ass BookSqgl SecondaryService {
@\wut owi red

@ualifier('dataSource_secondary')
def dat aSource2

}
Dependency I njection and Services

Y ou can inject services in other services with the same technique. If you had an aut hor servi ce
that needed to use the Bookser vi ce, declaring the aut hor servi ce as follows would allow that:

cl ass Aut hor Service {
def bookService
}

Dependency I njection and Domain Classes/ Tag Libraries

Y ou can even inject services into domain classes and tag libraries, which can aid in the
development of rich domain models and views:

cl ass Book {
def bookServi ce

def buyBook() {
bookSer vi ce. buyBook(t hi s)
}

Since Grails 3.2.8 thisis not enabled by default. If you want to enable it again, take alook
at Spring Autowiring of Domain Instance

Service Bean Names

http://docs.grails.org/latest/ref/Domain%20Classes/Usage.html#_spring_autowiring_of_domain_instances

The default bean name which is associated with a service can be problematic if there are
multiple services with the same name defined in different packages. For example consider
the situation where an application defines a service class named com demo. Repor ti ngSer vi ce @and
the application uses a plugin named reportingutitities and that plugin provides a service
class named com reporting.util.ReportingService.

The default bean name for each of those would be r eporti ngservi ce SO they would conflict
with each other. Grails manages this by changing the default bean name for services
provided by plugins by prefixing the bean name with the plugin name.

In the scenario described above the reporti ngservi ce bean would be an instance of the
com deno. Reporti ngServi ce class defined in the application and the
reportingUtilitiesReportingservice bean would be an instance of the

com reporting.util.ReportingService class provided by the ReportingUtilities plugln

For all service beans provided by plugins, if there are no other services with the same name
within the application or other plugins in the application then a bean alias will be created
which does not include the plugin name and that alias points to the bean referred to by the
name that does include the plugin name prefix.

For example, if the reportingutilities plugin provides a service named

comreporting. util.Aut hor Servi ce and there isno other aut hor servi ce in the application orin any
of the plugins that the application is using then there will be a bean named
reportingUtilitiesAuthorService which is an instance of thiscom reporting.util.AuthorService
class and there will be abean alias defined in the context named aut hor ser vi ce Which points
to that same bean.

14 Static Type Checking And Compilation

Groovy is adynamic language and by default Groovy uses a dynamic dispatch mechanism
to carry out method calls and property access. This dynamic dispatch mechanism provides a
lot of flexibility and power to the language. For example, it is possible to dynamically add
methods to classes at runtime and it is possible to dynamically replace existing methods at
runtime. Features like these are important and provide alot of power to the language.
However, there are times when you may want to disable this dynamic dispatch in favor of a
more static dispatch mechanism and Groovy provides away to do that. The way to tell the
Groovy compiler that a particular class should compiled statically isto mark the class with
the groovy.transform.CompileStatic annotation as shown below.

i mport groovy.transform ConpileStatic

@Conpi | eStatic
class Myd ass {

/1 this class will be statically conpiled...

}

See these notes on Groovy static compilation for more details on how conpi 1 est ati ¢ WOrks
and why you might want to useit.

One limitation of using conpi 1 estati ¢ 1S that when you use it you give up access to the power
and flexibility offered by dynamic dispatch. For example, in Grails you would not be able to
invoke a GORM dynamic finder from aclass that is marked with conpi 1 estati ¢ because the
compiler cannot verify that the dynamic finder method exists, because it doesn’t exist at

http://docs.groovy-lang.org/docs/latest/html/api/groovy/transform/CompileStatic.html
http://docs.groovy-lang.org/latest/html/documentation/#_static_compilation

compiletime. It may be that you want to take advantage of Groovy’s static compilation
benefits without giving up access to dynamic dispatch for Grails specific things like
dynamic finders and this is where grails.compiler.GrailsCompileStatic comesiin.

Grai | sConpi | estati ¢ behaves just like conpi 1 estati c but is aware of certain Grails features and
allows access to those specific features to be accessed dynamically.

14.1 The GrailsCompileStatic Annotation

GrailsCompileStatic

The a ai 1 scompi 1 est at i ¢ @annotation may be applied to a class or methods within a class.

inport grails.conpiler.GailsConpileStatic

@> ai | sConpil eStatic
cl ass SoneC ass {

/1 all of the code in this class will be statically conpiled
def nethodOne() {
...
}
def nethodTwo() ({
...
}
def nethodThree() {
...
}

}
inmport grails.conpiler.GailsConpileStatic

cl ass Soned ass {

/1 methodOne and net hodThree will be statically conpiled
/1 methodTwo will be dynamically conpiled

@5 ai | sConpi |l eStatic
def nethodOne() {
...

}

def nethodTwo() {
...

}

@ ai | sConpi l eStatic

def nethodThree() {
1.

}

}

It is possible to mark aclass with & ai 1 sconpi 1 est ati ¢ @and exclude specific methods by
marking them with a ai 1 sconpi 1 estati ¢ and specifying that the type checking should be
skipped for that particular method as shown below.

inmport grails.conpiler.GailsConpileStatic
i nport groovy.transform TypeChecki nghbde

@5 ai | sConpi l eStatic
cl ass SoneC ass {

/1 methodOne and net hodThree will be statically conpiled
/1 methodTwo will be dynamically conpiled

def nethodOne() {
...
}

@ ai | sConpi | eSt ati c(TypeChecki nghvbde. SKI P)
def nethodTwo() {

1.
}

http://docs.grails.org/3.3.8/api/grails/compiler/GrailsCompileStatic.html

def nethodThree() {
I
}

}

Code that is marked with & ai 1 sconpi 1 estati ¢ Will all be statically compiled except for Grails
specific interactions that cannot be statically compiled but that & ai | sconpi 1 estatic Can
identify as permissible for dynamic dispatch. These include things like invoking dynamic
finders and DSL code in configuration blocks like constraints and mapping closuresin
domain classes.

Care must be taken when deciding to statically compile code. There are benefits associated
with static compilation but in order to take advantage of those benefits you are giving up the
power and flexibility of dynamic dispatch. For exampleif code is statically compiled it
cannot take advantage of runtime metaprogramming enhancements which may be provided
by plugins.

14.2 The GrailsTypeChecked Annotation

GrailsTypeChecked

The grails.compiler.Grail sTypeChecked annotation works alot like the arai 1 sconpi 1 estati ¢
annotation except that it only enables static type checking, not static compilation. This
affords compile time feedback for expressions which cannot be validated statically at
compile time while still leaving dynamic dispatch in place for the class.

inport grails.conpiler.GailsTypeChecked

@ ai | sTypeChecked
cl ass Soned ass {

/1 all of the code in this class will be statically type
/'l checked and will be dynamically dispatched at runtinme

def nethodOne() {
I

}
def nethodTwo() {
...

def nethodThree() ({
I

15 Testing

Automated testing isakey part of Grails. Hence, Grails provides many ways to making
testing easier from low level unit testing to high level functional tests. This section details
the different capabilities that Grails offers for testing.

The first thing to be aware of isthat all of the create-* and generat e-* cOmmands create uni t
Or i ntegration tests automatically. For example if you run the create-controller command as
follows:

grails create-controller com acne. app. si npl e

Grailswill create acontroller at grails-app/controll ers/conf acne/ app/ Si npl eControl | er. groovy, and

http://docs.grails.org/3.3.8/api/grails/compiler/GrailsTypeChecked.html

asoaunittest at src/t est/ groovy/ con acne/ app/ Si npl eCont rol | er Spec. gr oovy. What Graillswon’'t do
however is populate the logic inside the test! That is left up to you.

The default class name suffix is Tests but as of Grails 1.2.2, the suffix of Test isaso
supported.

Running Tests

Tests are run with the test-app command:

grails test-app

The command will produce output such as:

Running Unit Tests...
Runni ng test FooTests...FAl LURE
Unit Tests Conpleted in 464ns ...

Tests failed: O errors, 1 failures

whilst showing the reason for each test failure.
Y ou can force a clean before running tests by passing - ci ean to the t est - app cOmmand.

Grails writes both plain text and HTML test reportsto the target/test-report s directory, along
with the original XML files. The HTML reports are generally the best onesto look at.

Using Grails' interactive mode confers some distinct advantages when executing tests. First,
the tests will execute significantly faster on the second and subsequent runs. Second, a
shortcut is available to open the HTML reportsin your browser:

open test-report

Y ou can also run your unit tests from within most I1DEs.
Targeting Tests

Y ou can selectively target the test(s) to be run in different ways. To run all testsfor a
controller named si npl econt rol 1 er YOU Would run:

grails test-app SinpleController

Thiswill run any tests for the class named si npl econt rot 1 er . Wildcards can be used. ..

grails test-app *Controller
Thiswill test all classes ending in control 1 er . Package names can optionally be specified...

grails test-app sone.org.*Controller

or to run all testsin a package...

grails test-app sone.org.*

or to run all testsin a package including subpackages...

grails test-app sone.org. **.*

Y ou can also target particular test methods...

grails test-app SinpleController.testLogin

Thiswill run the test Logi n test in the si npl econt rol 1er tests. Y ou can specify as many patterns
in combination asyou like...

grails test-app sone.org.* SinpleController.testLogin BookController

In Grails 2.x, adding - rerun as an argument would only run those tests which failed in the
previous test-app run. This argument is no longer supported.

In Grails 3.x, you might need to specify the package name before the class name, as well
as append "Spec" to the end. For example, if you want to run the test for the
ProductControIIer, you should use grails test-app *.Product Control | er Spec. NOte that the star
can be used if you don’t want to type the whole package hierarchy.

Debugging

In order to debug your tests via aremote debugger, you can add - - debug- j vm after graiis in
any commands, like so:

grails --debug-jvmtest-app

Thiswill open the default Java remote debugging port, 5005, for you to attach aremote
debugger from your editor / IDE of choice.

This differsfrom Grails 2.3 and previous, where the grai 1 s- debug cOmmand existed.

Targeting Test Phases

In addition to targeting certain tests, you can also target test phases. By default Grails has
two testi ng phases unit @ndintegration.

Grails 2.x uses phase: type Syntax. In Grails 3.0 it was removed, because it made no sensein
Gradle context.

To execute uni t tests you can run:
grails test-app -unit

Torunintegration tests you would run...

grails test-app -integration

Targeting Tests When Using Phases

Test and phase targeting can be applied at the same time:

grails test-app sone.org.**.* -unit

Thiswould run al testsin the uni t phase that are in the package sone. or g Or a subpackage.

15.1 Unit Testing

Unit testing are tests at the "unit" level. In other words you are testing individual methods or
blocks of code without consideration for surrounding infrastructure. Unit tests are typically
run without the presence of physical resources that involve I/O such databases, socket
connections or files. Thisisto ensure they run as quick as possible since quick feedback is
important.

Since Grails 3.3, the Grails Testing Support Framework isused for all unit tests. This
support provides a set of traits. An example hello world test can be seen below:

i nport spock. | ang. Specification
inmport grails.testing.web.controllers.ControllerUnitTest

class HelloControllerTests extends Specification inplenents ControllerUnitTest<HelloController> {

void "Test nessage action"() {
when: "The nessage action is invoked"
controll er. message()

then:"Hello is returned"
response.text == 'Hello'

}
}

For more information on writing tests with Grails Testing Support see the dedicated
documentation.

Versions of Grails below 3.2 used the Grails Test Mixin Framework which was based on the
aestM xi n AST transformation. This library has been superceded by the smpler and more
IDE friendly trait based implementation. However you can still use it by adding the
following dependency to your Grails application:

build.gradle

testConpile "org.grails:grails-test-mxins:3.3.0. RCL"

This may be useful if you are, for example, upgrading an existing application to Grails 3.3.x.

15.2 Integration Testing

Integration tests differ from unit testsin that you have full accessto the Grails environment
within the test. Y ou can create an integration test using the create-integration-test command:

$ grails create-integration-test Exanple

The above command will create a new integration test at the location
src/integration-test/groovy/ <PACKAGE>/ Exanpl eSpec. gr oovy.

Grails uses the test environment for integration tests and loads the application prior to the
first test run. All tests use the same application state.

Transactions
Integration test methods run inside their own database transaction by default, which isrolled

back at the end of each test method. This means that data saved during atest is not persisted
to the database (which is shared across all tests). The default generated integration test

https://testing.grails.org
https://testing.grails.org
https://testing.grails.org
https://grails-plugins.github.io/grails-test-mixin-plugin/latest/guide/index.html

template includes the Rallback annotation:

inmport grails.testing.mxin.integration.Integration
inport grails.gormtransactions.*
i mport spock. | ang.*

@ntegration

@Rrol | back
cl ass Exanpl eSpec extends Specification {

void "test something"() {
expect:"fix me"
true == false

}

The rol 1 back @nnotation ensures that each test method runs in atransaction that isrolled
back. Generdly thisis desirable because you do not want your tests depending on order or
application state.

In Grails 3.0 tests rely ON grails.gormtransactions. Rol | back annotation to bind the session in
integration tests. Though each test method transaction is rolled back, the set up() method uses
a separate transaction that is not rolled back. Data will persist to the database and will need
to be cleaned up manually if setup() Sets up data and persists them as shown in the below
sample:

inport grails.testing.mxin.integration.Integration
inmport grails.gormtransactions.*
i nport spock. | ang.*

@ntegration

@Rol | back
cl ass BookSpec extends Specification {

voi d setup() {
/1 Below |line would persist and not roll back
new Book(nanme: 'Grails in Action').save(flush: true)

}

void "test something"() {
expect :
Book.count() == 1

}

}

To automatically roll back setup logic, any persistence operations need to be called from the
test method itself so that they are run within the test method’ s rolled back transaction.
Similar to usage of the set uppata() method shown below:

inport grails.testing.mxin.integration.Integration
inmport grails.gormtransactions.*
i nport spock. | ang.*

@ntegration

@Rol | back
cl ass BookSpec extends Specification {

voi d setupbData() {
/1 Below line would roll back
new Book(nanme: 'Grails in Action').save(flush: true)

}
void "test something"() {
gi ven:
set upDat a()
expect :
Book. count () == 1
}

}

Using Spring’s Rollback annotation

http://docs.grails.org/3.3.8/api/grails/transaction/Rollback.html

Another transactional approach could be to use Spring’s @Rollback instead.

inport grails.testing.mxin.integration.|Integration
import org.springfranmework.test.annotation. Rol | back
i nport spock. | ang. *

@ntegration

@Rol | back
cl ass BookSpec extends Specification {

void setup() {
new Book(nanme: 'Grails in Action').save(flush: true)
}

void "test something"() {
expect :
Book. count () == 1

}

}

Itisn’t possible to make graii's. gorm transacti ons. Rol I back behave the same way as Spring’s
Rollback annotation because grai i s. gorm transacti ons. Rol I back transforms the byte code of
the class, eliminating the need for a proxy (which Spring’s version requires). This has the
downside that you cannot implement it differently for different cases (as Spring does for
testing).

DirtiesContext

If you do have a series of tests that will share state you can remove the rol 1 back and the last
test in the suite should feature the DirtiesContext annotation which will shutdown the
environment and restart it fresh (note that this will have an impact on test run times).

Autowiring

To obtain areference to a bean you can use the Autowired annotation. For example:

i mport org.springfranework. beans. factory. annotation. *

@ntegration

@Rol | back
cl ass Exanpl eServi ceSpec extends Specification {

@\ut owi red
Exanpl eServi ce exanpl eServi ce

voi d "Test exanple service"() {
expect:
exanpl eServi ce. count Exanpl es() == 0

}
}

Testing Controllers

To integration test controllersit is recommended you use create-functional -test command to
create a Geb functional test. See the following section on functional testing for more
information.

15.3 Functional Testing

Functional tests involve making HT TP requests against the running application and
verifying the resultant behaviour. Thisis useful for end-to-end testing scenarios, such as
making REST calls against a JSON API.

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/test/annotation/Rollback.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/test/annotation/DirtiesContext.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html

Grails by default ships with support for writing functional tests using the Geb framework.
To create afunctional test you can use the creat e- f uncti onal -test cOmmand which will create
anew functional test:

$ grails create-functional -test MyFunctiona

The above command will create a new Spock spec called wFuncti onal spec. groovy N the
src/integration-test/groovy directory. Thetest isannotated with the Integration annotation to
indicate it is an integration test and extends the cebspec SUper class:

@ntegration
cl ass HomeSpec extends GebSpec {

def setup() {
}

def cleanup() {
}

void "Test the home page renders correctly"() {
when: " The hone page is visited"
go '/’

then:"The title is correct”
$('title'). text() == "Welcone to Gails"
}

}

When the test is run the application container will be loaded up in the background and you
can send requests to the running application using the Geb API.

Note that the application is only loaded once for the entire test run, so functional tests share
the state of the application across the whole suite.

In addition the application isloaded in the VM as the test, this means that the test has full
access to the application state and can interact directly with data services such as GORM to
setup and cleanup test data.

The i ntegrati on @nNotation supports an optional appi i cati ond ass attribute which may be used
to specify the application class to use for the functional test. The class must extend
GrailsAutoConfiguration.

@ntegration(applicationCl ass=com denp. Appl i cati on)
cl ass HoneSpec extends GebSpec {

...
}

If the appl i cationa ass 1S Not specified then the test runtime environment will attempt to locate
the application class dynamically which can be problematic in multiproject builds where
multiple application classes may be present.

When running the server port by default will be randomly assigned. The i ntegration
annotation adds a property of serverprort t0 the test class that you can use if you want to know
what port the application is running on thisisn’t needed if you are extending the cebspec as
shown above but can be useful information.

If you want to run the tests on afixed port (defined by the server. port configuration
property), you need to manually annotate your test with @spri nggoot Test :

inmport grails.testing.mxin.integration.|ntegration
i nport org.springframework. boot . t est. cont ext. Spri ngBoot Test

http://www.gebish.org
http://docs.grails.org/3.3.8/api/grails/test/mixin/integration/Integration.html
http://docs.grails.org/3.3.8/api/grails/boot/config/GrailsAutoConfiguration.html

i mport spock. | ang. Speci fication

@ntegration
@pr i ngBoot Test (webEnvi ronnent = Spri ngBoot Test. WebEnvi r onment . DEFI NED_PORT)
cl ass MySpec extends Specification {

...

16 Inter nationalization

Grails supports Internationalization (i118n) out of the box by leveraging the underlying
Spring MV C internationalization support. With Grails you are able to customize the text that
appearsin aview based on the user’s Locale. To quote the javadoc for the Locale class:

A Locale object represents a specific geographical, political, or cultural region. An operation
that requires aLocale to perform itstask is called locale-sensitive and uses the Locale to
tailor information for the user. For example, displaying a number is alocale-sensitive
operation—the number should be formatted according to the customs/conventions of the
user’s native country, region, or culture.

A Locaeis made up of alanguage code and a country code. For example "en _US' isthe
code for US English, whilst "en_GB" is the code for British English.

16.1 Under standing M essage Bundles

Now that you have an idea of locales, to use them in Grails you create message bundle file
containing the different languages that you wish to render. Message bundlesin Grails are
located inside the grai 1 s- app/i 18n directory and are ssmple Java properties files.

Each bundle starts with the name ressages by convention and ends with the locale. Grails
ships with several message bundles for awhole range of languages within the grai i s- app/i 18n
directory. For example:

messages.properties

messages _da.properties
messages_de.properties
messages_es.properties

messages _fr.properties

By default Grails00Ks in messages. properties fOr messages unless the user has specified a
locale. Y ou can create your own message bundle by simply creating a new propertiesfile
that ends with the locale you are interested in. For example ressages_en_c8. properties fOr
British English.

https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

16.2 Changing L ocales

By default the user locale is detected from the incoming accept - Language header. However,
you can provide users the capability to switch locales by simply passing a parameter called
I ang t0 Grails as arequest parameter:

/ book/ i st ?l ang=es

Grailswill automatically switch the user’slocale and store it in a cookie so subsequent
requests will have the new header.

16.3 Reading M essages
Reading M essagesin the View

The most common place that you need messages is inside the view. Use the message tag for
this:

<g: nessage code="ny. | ocalized.content" />

Aslong as you have akey in your ressages. properties (With appropriate locale suffix) such as
the one below then Grails will look up the message:

ny.localized. content=Hola, ne |lanp John. Hoy es doni ngo.

M essages can also include arguments, for example:

<g: nessage code="ny. | ocalized.content" args="${ ['Juan', 'lunes'] }" />

The message declaration specifies positional parameters which are dynamically specified:

ny.localized.content=Hola, ne |lanp {0}. Hoy es {1}.
Reading M essagesin Grails Artifacts with M essageSour ce

In aGrails artifact, you can inject nessagesour ce and use the method get vessage With the
arguments. message code, message arguments, default message and locale to retrieve a

message.
i nport org.springframework. cont ext. MessageSour ce
class MyappController {

MessageSour ce nmessageSour ce

def show() {

}

def nsg = nmessageSource. get Message(' ny.localized.content', ['Juan', 'lunes'] as Object[], 'Default Message',

Reading M essagesin Controllersand Tag Librarieswith the Message Tag
Additionally, you can read a message inside Controllers and Tag Libraries with the Message
Tag. However, using the message tag relies on GSP support which a Grails application may
not necessarily have; e.g. arest application.

In a controller, you can invoke tags as methods.

re

http://gsp.grails.org/latest/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/message.html

def show() {
def nsg = nmessage(code: "nmy.localized.content”, args: ['Juan', 'lunes'])

}

The same technique can be used in tag libraries, but if your tag library uses a custom
namespace then you must prefix the call with g. :

def nyTag = { attrs, body ->
def nsg = g.message(code: "ny.localized.content", args: ['Juan', 'lunes'])

}

16.4 Scaffolding and i18n

Grails scaffolding templates for controllers and views are fully i18n-aware. The GSPs use
the message tag for labels, buttons etc. and controller 11 ash messages use i18n to resolve
local e-specific messages.

The scaffolding includes locale specific labels for domain classes and domain fields. For
example, if you have asook domain classwith atitie field:

cl ass Book {
String title
}

The scaffolding will use labels with the following keys:

book. | abel = Libro
book.title.label = Ttulo del libro

Y ou can use this property pattern if you'd like or come up with one of your own. Thereis

nothing special about the use of the word 1 abel as part of the key other than it’ s the
convention used by the scaffolding.

17 Security

Grailsis no more or less secure than Java Servlets. However, Java servlets (and hence
Grails) are extremely secure and largely immune to common buffer overrun and malformed
URL exploits due to the nature of the Java Virtual Machine underpinning the code.

Web security problems typically occur due to developer naivety or mistakes, and thereisa
little Grails can do to avoid common mistakes and make writing secure applications easier to
write.

What Grails Automatically Does

Grails has afew built in safety mechanisms by default.

¢ All standard database access via GORM domain objects is automatically SQL escaped to

prevent SQL injection attacks
® The default scaffolding templates HTML escape all data fields when displayed

® Grailslink creating tags (link, form, createl ink, createl inkTo and others) all use
appropriate escaping mechanisms to prevent code injection

http://gsp.grails.org/latest/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/link.html
http://gsp.grails.org/latest/ref/Tags/form.html
http://gsp.grails.org/latest/ref/Tags/createLink.html
http://gsp.grails.org/latest/ref/Tags/createLinkTo.html

® Grails provides codecsto let you trivially escape data when rendered as HTML, JavaScript
and URL s to prevent injection attacks here.

17.1 Securing Against Attacks
SQL injection

Hibernate, which is the technology underlying GORM domain classes, automatically
escapes data when committing to database so thisis not an issue. However it is still possible
to write bad dynamic HQL code that uses unchecked request parameters. For example doing
the following is vulnerable to HQL injection attacks:

def vul nerable() {
def books = Book.find("fromBook as b where b.title =" + parans.title + "'")

}

or the analogous call using a GString:

def vul nerabl e() {
def books = Book.find("from Book as b where b.title =" ${parans.title}'")

}

Do not do this. Use named or positional parameters instead to passin parameters:

def safe() {
def books = Book.find("from Book as b where b.title
[parans.title])
}

"
N

or

def safe() {
def books = Book.find("from Book as b where b.title = :title",
[title: parans.title])

}
Phishing

Thisreally apublic relations issue in terms of avoiding hijacking of your branding and a
declared communication policy with your customers. Customers need to know how to
identify valid emails.

XSS - cross-site scripting injection

It isimportant that your application verifies as much as possible that incoming requests were
originated from your application and not from another site. It is a'so important to ensure that
all data values rendered into views are escaped correctly. For example when rendering to
HTML or XHTML you must ensure that people cannot maliciously inject JavaScript or
other HTML into data or tags viewed by others.

Grails 2.3 and above include special support for automatically encoded data placed into GSP

pages. See the documentation on Cross Site Scripting (XSS) prevention for further
information.

Y ou must also avoid the use of request parameters or datafields for determining the next
URL to redirect the user to. If you use asuccessur. parameter for example to determine

where to redirect a user to after a successful login, attackers can imitate your login
procedure using your own site, and then redirect the user back to their own site once logged
in, potentially allowing JavaScript code to then exploit the logged-in account on the site.

Cross-siterequest forgery

CSRF involves unauthorized commands being transmitted from a user that a website trusts.
A typical example would be another website embedding a link to perform an action on your
websiteif the user is still authenticated.

The best way to decrease risk against these types of attacksisto use the useToken attribute on
your forms. See Handling Duplicate Form Submissions for more information on how to use
it. An additional measure would be to not use remember-me cookies.

HTML/URL injection

Thisiswhere bad datais supplied such that when it is later used to create alink in a page,
clicking it will not cause the expected behaviour, and may redirect to another site or alter
request parameters.

HTML/URL injection is easily handled with the codecs supplied by Grails, and the tag
libraries supplied by Grails all use encodeAsURL where appropriate. If you create your own
tags that generate URL s you will need to be mindful of doing thistoo.

Denial of service

L oad balancers and other appliances are more likely to be useful here, but there are a'so
issues relating to excessive queries for example where alink is created by an attacker to set
the maximum value of aresult set so that a query could exceed the memory limits of the
server or slow the system down. The solution here is to always sanitize request parameters
before passing them to dynamic finders or other GORM query methods:

int limt = 100
def safeMax = Math.m n(parans. max?.tolnteger() ?: limt, limt) // limt to 100 results
return Book. i st (max: saf eMax)

Guessable I Ds

Many applications use the last part of the URL asan "id" of some object to retrieve from
GORM or elsewhere. Especially in the case of GORM these are easily guessable asthey are
typically sequential integers.

Therefore you must assert that the requesting user is allowed to view the object with the
requested id before returning the response to the user.

Not doing thisis "security through obscurity" which isinevitably breached, just like having
adefault password of "letmein” and so on.

Y ou must assume that every unprotected URL is publicly accessible one way or another.

17.2 Cross Site Scripting (XSS) Prevention

Cross Site Scripting (X SS) attacks are a common attack vector for web applications. They

typically involve submitting HTML or Javascript code in aform such that when that code is
displayed, the browser does something nasty. It could be as simple as popping up an aert
box, or it could be much worse like for example one could access other users session
cookies.

The solution is to escape all untrusted user input when it is displayed in a page. For
example,

<script>alert('Got yal!');</script>

will become

& t;script>alert('Got yal'); & t;/scripté>
when rendered, nullifying the effects of the malicious input.

By default, Grails playsit safe and escapes all content in ¢} expressionsin GSPs. All the
standard GSP tags are also safe by default, escaping any relevant attribute values.

So what happens when you want to stop Grails from escaping some content? There are valid
use cases for putting HTML into the database and rendering it as-is, as long as that content
istrusted. In such cases, you can tell Grails that the content is safe as should be rendered
raw, i.e. without any escaping:

<section>${raw(page. content)}</section>

Theraw) method you see here is available from controllers, tag libraries and GSP pages.

XSS prevention ishard and requiresalot of developer attention

Although Grails playsit safe by default, that is no guarantee that your application will be
invulnerable to an XSS-style attack. Such an attack isless likely to succeed than would
otherwise be the case, but developers should always be conscious of potential attack
vectors and attempt to uncover vulnerabilities in the application during testing. It's also
easy to switch to an unsafe default, thereby increasing the risk of avulnerability being
introduced.

There are more details about the XSS in OWASP - XSS prevention rules and OWASP -
Types of Cross-Site Scripting. Types of XSS are: Stored XSS, Reflected XSS and DOM
based XSS. DOM based XSS prevention is coming more important because of the
popularity of Javascript client side templating and Single Page Apps.

Grails codecs are mainly for preventing stored and reflected XSS type of attacks. Grails 2.4
includes HTMLJS codec that assistsin preventing some DOM based XSS attacks.

It's difficult to make a solution that works for everyone, and so Grails provides alot of
flexibility with regard to fine-tuning how escaping works, allowing you to keep most of
your application safe while switching off default escaping or changing the codec used for
pages, tags, page fragments, and more.

Configuration

It is recommended that you review the configuration of anewly created Grails application to
garner an understanding of XSS prevention worksin Grails.

https://blog.codinghorror.com/protecting-your-cookies-httponly/
https://blog.codinghorror.com/protecting-your-cookies-httponly/
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_XSS_Attacks
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

When you tag a cookie with the HttpOnly flag, it tells the browser that this particular cookie
should only be accessed by the server. Any attempt to access the cookie from client script is
strictly forbidden. This can be configured in the appi i cation. ymi configuration file as seen
below:

server:
sessi on:
cooki e:
domai n: exanple.org
http-only: true
path: / secure: true

GSP features the ability to automatically HTML encode GSP expressions, and as of Grails
2.3 thisisthe default configuration. The default configuration (found in appi i cation. yni) for a
newly created Grails application can be seen below:

grails:
Vi ews:
gsp:

encodi ng: UTF-8

ht M codec: xm # use xm escaping instead of HTM.4 escapi ng

codecs:
expression: htm # escapes val ues inside ${}
scriptlets: html # escapes output fromscriptlets in GSPs
taglib: none # escapes output fromtaglibs
staticparts: none # escapes output fromstatic tenplate parts

GSP features severa codecs that it uses when writing the page to the response. The codecs
are configured in the codecs block and are described below:

® cxpression - The expression codec is used to encode any code found within ${..} expressions.
The default for newly created application isntm encoding.

® scriptiet - Used for output from GSP scriplets (<% %>, <%= %> blocks). The default for
newly created applicationsisntn encoding

® taglib - Used to encode output from GSP tag libraries. The default is none for new
applications, astypically it is the responsibility of the tag author to define the encoding of a
given tag and by specifying none Grails remains backwards compatible with older tag
libraries.

® staticparts - Used to encode the raw markup output by a GSP page. The default iS none.
Double Encoding Prevention
Versions of Grails prior to 2.3, included the ability to set the default codec to ntm , however
enabling this setting sometimes proved problematic when using existing plugins due to
encoding being applied twice (once by the ntni codec and then again if the plugin manually

called encodeasHt).

Grails 2.3 includes double encoding prevention so that when an expression is evaluated, it
will not encode if the data has already been encoded (Example s oo. encodeAsHTM () }).

Raw Output
If you are 100% sure that the value you wish to present on the page has not been received

from user input, and you do not wish the value to be encoded then you can use the raw
method:

${raw(book.title)}
The 'raw' method is available in tag libraries, controllers and GSP pages.
Per Plugin Encoding

Grails also features the ability to control the codecs used on a per plugin basis. For example
if you have a plugin named o0 installed, then placing the following configuration in your
appl i cati on. groovy Will disable encoding for only the oo plugin

foo.grails.views. gsp.codecs. expression = "none"
Per Page Encoding

Y ou can aso control the various codecs used to render a GSP page on a per page basis,
using a page directive:

<Y%dage expressi onCodec="none" %
Per Tag Library Encoding

Each tag library created has the opportunity to specify a default codec used to encode output
from the tag library using the "defaultEncodeAs" property:

static defaul tEncodeAs = '"htni'

Encoding can also be specified on a per tag basis using "encodeAsForTags':

static encodeAsForTags = [tagNane: 'raw]
Context Sensitive Encoding Switching

Certain tags require certain encodings and Grails features the ability to enable a codec only a
certain part of atag’'s execution using the "withCodec" method. Consider for example the
"<g:javascript>"" tag which allows you to embed JavaScript code in the page. Thistag
requires JavaScript encoding, not HTML coding for the execution of the body of the tag (but
not for the markup that is output):

out.println '<script type="text/javascript">'
wi t hCodec("JavaScript") {
out << body()

out.println()
out.println '</script>'

Forced Encoding for Tags

If atag specifies a default encoding that differs from your requirements you can force the
encoding for any tag by passing the optional ‘'encodeAs attribute:

<g: nessage code="foo.bar" encodeAs="JavaScript" />

Default Encoding for All Output

The default configuration for new applications is fine for most use cases, and backwards
compatible with existing plugins and tag libraries. However, you can also make your

application even more secure by configuring Grails to aways encode al output at the end of
aresponse. Thisisdone using theri i teri ngcodecFor cont ent Type cONfiguration in

appl i cati on. groovy.

grails.views.gsp.filteringCodecForContentType.'text/htm"' = "htm"'

Note that, if activated, thestaticparts codec typically needs to be set to raw SO that static
markup is not encoded:

codecs {
expression = 'html' // escapes val ues inside ${}
scriptlet = "html' // escapes output fromscriptlets in GSPs
taglib = 'none' // escapes output fromtaglibs
staticparts = 'raw // escapes output fromstatic tenplate parts

17.3 Encoding and Decoding Objects

Grails supports the concept of dynamic encode/decode methods. A set of standard codecs
are bundled with Grails. Grails aso supports a simple mechanism for developersto
contribute their own codecs that will be recognized at runtime.

Codec Classes

A Grails codec classis one that may contain an encode closure, a decode closure or both.
When a Grails application starts up the Grails framework dynamically loads codecs from the
grails-app/utils/ directory.

The framework 1ooks under grai 1 s-appr utit s/ for class names that end with the convention
codec. FOr example one of the standard codecs that ships with Grailsis v codec.

If a codec contains an encode closure Grailswill create a dynamic encode method and add that
method to the aj ect Class with a name representing the codec that defined the encode
closure. For example, the Hrm codec Class defines an encode Closure, so Grails attaches it with
the name encodeasHTM..

The Hrm.codec @Nd UrRLcodec Classes also define a decode Closure, so Grails attaches those with
the names decodeHtm. @nd decodeur. respectively. Dynamic codec methods may be invoked
from anywhere in a Grails application. For example, consider a case where areport contains
aproperty called 'description’ which may contain special characters that must be escaped to
be presented in an HTML document. One way to deal with that in a GSP is to encode the
description property using the dynamic encode method as shown below:

${report.description. encodeAsHTM ()}
Decoding is performed using val ue. decodeHtm () Syntax.
Encoder and Decoder interfacesfor staticly compiled code

A preferred way to use codecsis to use the codecL ookup bean to get hold of encoder and
Decoder 1NStaNCES.

package org.grails. encoder;

public interface CodecLookup {

publ i c Encoder | ookupEncoder (String codecNane);
publ i c Decoder | ookupDecoder(String codecNane);
}

example of using codecLookup and encoder interface

import org.grails.encoder. CodecLookup

cl ass CustoniragLib {
CodecLookup codecLookup

def nyTag = { Map attrs, body ->
out << codecLookup. | ookupEncoder (' HTM.'). encode(attrs. sonet hi ng)
}

}

Standard Codecs
HTMLCodec

This codec performs HTML escaping and unescaping, so that values can be rendered safely
inan HTML page without creating any HTML tags or damaging the page layout. For
example, given avalue "Don’t you know that 2 > 17" you wouldn’t be able to show this
safely within an HTML page because the > will look like it closes atag, which is especially
bad if you render this data within an attribute, such as the value attribute of an input field.

Example of usage:
<i nput name="comment . message" val ue="${comment. message. encodeAsHTM.()}"/>

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use
double quotes on attribute values to avoid text with apostrophes affecting your page.

HTML Codec defaultsto HTML4 style escaping (legacy HTML Codec implementation in
Grails versions before 2.3.0) which escapes non-ascii characters.

You can use plain XML escaping instead of HTML4 escaping by setting this config
property in appl i cation. groovy.

grails.views.gsp. htm codec = 'xm"'
XML Codec
This codec performs XML escaping and unescaping. It escapes & ,<,>,",",\\\W\, @, ",

non breaking space (\\u00a0), line separator (\\\u2028) and paragraph separator
(\Wu2029).

HTMLJSCodec
This codec performs HTML and JS encoding. It is used for preventing some DOM-XSS

vulnerabilities. See OWASP - DOM based XSS Prevention Cheat Sheet for guidelines of
preventing DOM based XSS attacks.

URL Codec

URL encoding is required when creating URLs in links or form actions, or any time datais
used to create a URL. It preventsillegal characters from getting into the URL and changing
its meaning, for example "Apple & Blackberry" is not going to work well as a parameter in
a GET request as the ampersand will break parameter parsing.

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

Example of usage:

Repeat | ast search
</ a>

Base64Codec

Performs Base64 encode/decode functions. Example of usage:

Your registration code is: ${user.registrati onCode. encodeAsBase64()}
JavaScriptCodec

Escapes Strings so they can be used as valid JavaScript strings. For example:

El enent. updat e(' ${el enent1d}"',
"${render (tenplate: "/common/ message").encodeAsJavaScript()}')

HexCodec

Encodes byte arrays or lists of integers to lowercase hexadecimal strings, and can decode
hexadecimal stringsinto byte arrays. For example:

Sel ected col our: #${[255, 127, 255] . encodeAsHex ()}
M D5Codec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uniquel D. encodeAsMD5()}

M D5BytesCodec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as a byte array. Example of usage:

byt e[] passwordHash = parans. password. encodeAsVD5Byt es()

SHA1Codec

Usesthe SHA1 agorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uniquel D. encodeAsSHAL()}

SHA1BytesCodec

Usesthe SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of astring (in
default system encoding), as a byte array. Example of usage:

byte[] passwordHash = parans. password. encodeAsSHA1Byt es()

SHA256Codec

Uses the SHA 256 algorithm to digest byte arrays or lists of integers, or the bytes of a string
(in default system encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uni quel D. encodeAsSHA256()}

SHA?256BytesCodec

Uses the SHA 256 algorithm to digest byte arrays or lists of integers, or the bytes of a string
(in default system encoding), as a byte array. Example of usage:

byt e[] passwordHash = parans. passwor d. encodeAsSHA256Byt es()
Custom Codecs

Applications may define their own codecs and Grails will load them aong with the standard
codecs. A custom codec class must be defined in the grai 1 s-app/ uti s/ directory and the class
name must end with codec. The codec may contain astatic encode ClOSUre, st atic decode
closure or both. The closure must accept a single argument which will be the object that the
dynamic method was invoked on. For Example:

cl ass PigLatinCodec {
static encode = { str ->
/1 convert the string to pig latin and return the result
}
}

With the above codec in place an application could do something like this:

${| ast Nane. encodeAsPi gLatin()}

17.4 Authentication

Grails has no default mechanism for authentication asit is possible to implement
authentication in many different ways. It is however, easy to implement asimple
authentication mechanism using interceptors. Thisis sufficient for ssmple use cases but it's
highly preferable to use an established security framework, for example by using the Spring
Security or the Shiro plugin.

Interceptors let you apply authentication across all controllers or across a URI space. For
example you can create a new set of filtersin aclass called
grails-app/control | ers/Securitylnterceptor.groovy by runni ng:

grails create-interceptor security

and implement your interception logic there:

class Securitylnterceptor {

Securitylnterceptor() {
mat chAl |l ()
.except(controller:"user', action:'login")

bool ean before() {
if (!session.user && actionNane != "login") {
redirect(controller: "user", action: "login")
return fal se

return true

Here the interceptor intercepts execution before all actions except 1 ogi n are executed, and if
there is no user in the session then redirect to the 1 ogi n action.

The1ogin action itself is simple too:

def login() {
if (request.get) {
return // render the login view

}

def u = User.findByLogi n(parans. | ogin)
it (u) {
if (u.password == parans. password) {
session.user = u
redirect (action: "hone")

el se {
render (view "login", nodel: [nmessage: "Password incorrect"])
}
}

el se {
render (view "login", nodel: [nessage: "User not found"])
}

}

17.5 Security Plugins

If you need more advanced functionality beyond simple authentication such as
authorization, roles etc. then you should consider using the spring security core plugin.

17.5.1 Spring Security

The Spring Security plugins are built on the Spring Security project which provides a
flexible, extensible framework for building all sorts of authentication and authorization
schemes. The plugins are modular so you can install just the functionality that you need for
your application. The Spring Security plugins are the official security plugins for Grails and
are actively maintained and supported.

Thereis a Core plugin which supports form-based authentication, encrypted/salted
passwords, HTTP Basic authentication, etc. and secondary dependent plugins provide
aternate functionality such as ACL support, single sign-on with Jasig CAS, LDAP
authentication, Kerberos authentication, and a plugin providing user interface extensions and
security workflows.

See the Core plugin page for basic information and the user guide for detailed information.

18 Plugins

Grailsisfirst and foremost a web application framework, but it is also a platform. By
exposing a number of extension points that let you extend anything from the command line
interface to the runtime configuration engine, Grails can be customised to suit amost any
needs. To hook into this platform, all you need to do is create a plugin.

Extending the platform may sound complicated, but plugins can range from trivialy simple
to incredibly powerful. If you know how to build a Grails application, you’'ll know how to

http://projects.spring.io/spring-security/
http://grails.org/plugins.html#plugin/spring-security-core
https://grails.org/plugins.html#plugin/spring-security-acl
https://grails.org/plugins.html#plugin/spring-security-cas
https://grails.org/plugins.html#plugin/spring-security-ldap
https://grails.org/plugins.html#plugin/spring-security-ldap
https://grails.org/plugins.html#plugin/spring-security-kerberos
https://grails.org/plugins.html#plugin/spring-security-ui
http://grails.org/plugins.html#plugin/spring-security-core
http://grails-plugins.github.io/grails-spring-security-core/

create a plugin for sharing a data model or some static resources.

18.1 Creating and Installing Plugins
Creating Plugins

Creating a Grails plugin is a simple matter of running the command:

grails create-plugin <<PLUG N NAMVE>>

Thiswill create aweb-plugin project for the name you specify. For example running grai i s
create-pl ugi n exampl e WOUld create a new web-plugin project called exanpl e.

In Grails 3.0 you should consider whether the plugin you create requires a web environment
or whether the plugin can be used with other profiles. If your plugin does not require aweb
environment then use the "plugin” profile instead of the default "web-plugin” profile:

grails create-plugin <<PLUG N NAME>> --profile=plugin

Make sure the plugin name does not contain more than one capital letter in arow, or it won't
work. Camel caseisfine, though.

Being aregular Grails project has a number of benefitsin that you can immediately test your
plugin by running (if the plugin targets the "web" profile):

grails run-app

Plugin projects don’'t provide an index.gsp by default since most plugins don’t need it. So,
if you try to view the plugin running in a browser right after creating it, you will receive a
page not found error. Y ou can easily create a grai i s- app/ vi ews/ i ndex. gsp for your plugin if
you'd like.

The structure of a Grails plugin is very nearly the same as a Grails application project’s
except that in the src/ mai n/ gr covy directory under the plugin package structure you will find a
plugin descriptor class (aclassthat endsin "GrailsPlugin®). For example:

inport grails.plugins.*

cl ass Exanpl eGrail sPlugin extends Plugin {

}

All plugins must have this class under the src/ mai n/ gr covy directory, otherwise they are not
regarded as a plugin. The plugin class defines metadata about the plugin, and optionally
various hooks into plugin extension points (covered shortly).

Y ou can a'so provide additional information about your plugin using several special
properties:

® tit1e - short one-sentence description of your plugin

® grailsversion - Theversion range of Grailsthat the plugin supports. eg. "1.2 > *" (indicating
1.2 or higher)

® author - plugin author’s name

® authoremail - plugin author’s contact e-mail

® devel opers - Any additional developers beyond the author specified above.
® description - full multi-line description of plugin’s features

® documentation - URL oOf the plugin’s documentation

® |icense - License of the plugin

® issuemanagenent - |Ssue Tracker of the plugin

scm- Source code management location of the plugin

Hereis asimmed down example from the Quartz Grails plugin:

package quartz

@l f 4j
class QuartzGailsPlugin extends Plugin {
/1 the version or versions of Gails the plugin is designed for
def grailsVersion = "3.0.0.BU LD SNAPSHOT > *"
/1 resources that are excluded from plugin packagi ng
def plugi nExcludes = [
"grail s-app/views/error.gsp"
]

def title = "Quartz" // Headline display name of the plugin

def author = "Jeff Brown"
def authorEmail = "zzz@yy. conf
def description ="'"'""\ Adds Quartz job scheduling features """’
def profiles = ['web']
List loadAfter = ['hibernate3', 'hibernated4', 'hibernate5 , 'services']
def docunentation = "http://grails.org/plugin/quartz"
def |icense = "APACHE"
def issueManagenent = [system "G thub Issues", url: "http://github.confgrails3-plugins/quartz/issues"]
def devel opers = [
[nane: "Joe Dev", email: "joedev@nmail.cont]

]
def scm= [url: "https://github.confgrails3-plugins/quartz/"]

Closure doWthSpring()......
Installing L ocal Plugins

To make your plugin available for usein a Grails application run the i nstai 1 command:

grails install

Thiswill install the plugin into your local Maven cache. Then to use the plugin within an
application declare a dependency on the plugin in your bui i d. gradi e file:

conpile "org.grails.plugins:quartz:0.1"

In Grails 2.x plugins were packaged as ZIP files, however in Grails 3.x plugins are simple
JAR files that can be added to the classpath of the IDE.

Pluginsand Multi-Project Builds
If you wish to setup a plugin as part of amulti project build then follow these steps.
Step 1: Createthe application and the plugin

Using the grai 1 s command create an application and a plugin:

https://github.com/grails-plugins/grails-quartz

$ grails create-app nyapp
$ grails create-plugin nyplugin

Step 2: Create a settings.gradlefile

In the same directory create asettings. gradi e file with the following contents:
i nclude "myapp", "nyplugin"

The directory structure should be as follows:

PRQIECT_DI R
- settings.gradle

- nhyapp

- build.gradle
- nmyplugin

- build.gradle

Step 3: Declare a project dependency on the plugin

Within the bui 1 d. gradi e Of the application declare a dependency on the plugin within the
pl ugi ns block:

grails {
pl ugi ns {
conpile project(':nyplugin')

Y ou can a'so declare the dependency within the dependenci es block, however you will not
get subproject reloading if you do this!

Step 4: Configurethe plugin to enable reloading

In the plugin directory, add or modify the gradi e. properties file. A new property expi oded=t r ue
needs to be set in order for the plugin to add the exploded directories to the classpath.

Step 5: Run the application

Now run the application using the grai 1 s run-app cOmmand from the root of the application
directory, you can use the verbose flag to see the Gradle outpuit:

$ cd nyapp
$ grails run-app -verbose

Y ou will notice from the Gradle output that plugins sources are built and placed on the
classpath of your application:

:nypl ugi n: conpi | eAst Java UP- TO DATE

:nypl ugi n: conpi | eAst Groovy UP- TO DATE
:nmypl ugi n: processAst Resour ces UP- TO- DATE
:nypl ugi n: ast d asses UP- TO- DATE

:nypl ugi n: conpi | eJava UP- TO- DATE

:nypl ugi n: confi gScri pt UP-TO DATE

:nypl ugi n: conpi | eG oovy

:nypl ugi n: copyAssets UP- TO DATE

:nypl ugi n: copyConmands UP- TO- DATE

:nypl ugi n: copyTenpl at es UP- TO DATE

:nypl ugi n: processResour ces

:nyapp: conpi | eJava UP- TO- DATE

:myapp: conpi | eG oovy

:myapp: processResour ces UP- TO DATE
:nyapp: cl asses

:nyapp: fi ndvai nCl ass

:myapp: boot Run

Grails application running at http://1ocal host:8080 in environment: devel opnent

Notes on excluded Artefacts

Although the create-plugin command creates certain files for you so that the plugin can be
run as a Grails application, not all of these files are included when packaging a plugin. The
following isalist of artefacts created, but not included by package-plugin:

® grails-app/build.gradle (although itisusedto generate dependenci es. groovy)

® grails-app/conf/application.yn (renamed to p| uglnyml)

°
grail s-app/ conf/spring/resources. groovy

grail s-app/ conf /| ogback. gr oovy
® Everything within/src/test/*
® SCM management fileswithin «\+/. svn/=\+ and \ */ cvs/ *\ *
Customizing the plugin contents

When developing a plugin you may create test classes and sources that are used during the
development and testing of the plugin but should not be exported to the application.

To exclude test sources you need to modify the pi ugi nexcl udes property of the plugin
descriptor AND exclude the resources inside your bui i d. gradi e file. For example say you
have some classes under the com dero package that are in your plugin source tree but should
not be packaged in the application. In your plugin descriptor you should exclude these:

/'l resources that should be | oaded by the plugin once installed in the application
def plugi nExcl udes = [
" **[com deno/ **'

]

And in your bui I d. gradi e YOU should exclude the compiled classes from the JAR file:

jar {
excl ude "conl demp/ **/**"

}

Inline Pluginsin Grails 3.0

In Grails 2.x it was possible to specify inline pluginsin sui 1 dconfi g, in Grails 3.x this
functionality has been replaced by Gradle’ s multi-project build feature.

To set up amulti project build create an appliation and a plugin in a parent directory:

$ grails create-app nyapp
$ grails create-plugin nyplugin

Then create asettings. gradi e file in the parent directory specifying the location of your
application and plugin:

include 'nyapp', 'nyplugin

Finally add a dependency in your application’ S bui d. gradi e 0N the plugin:

conpile project(':nyplugin')

Using this technique you have achieved the equivalent of inline plugins from Grails 2.x.

18.2 Plugin Repositories

Distributing Pluginsin the Grails Central Plugin Repository

The preferred way to distribute plugin is to publish to the official Grails Central Plugin
Repository. Thiswill make your plugin visible to the list-plugins command:

grails list-plugins

which lists all pluginsthat are in the central repository. Y our plugin will also be available to
the plugin-info command:

grails plugin-info [plugin-nane]

which prints extrainformation about it, such as its description, who wrote, etc.

If you have created a Grails plugin and want it to be hosted in the central repository, you'll
find instructions for getting an account on the plugin portal website.

18.3 Providing Basic Artefacts

Add Command Line Commands

A plugin can add new commands to the Grails 3.0 interactive shell in one of two ways. First,
using the create-script you can create a code generation script which will become available
to the application. The creat e-scri pt command will create the script in the src/ min/scripts
directory:

+ src/main/scripts <-- additional scripts here
+ grails-app

+ controllers

+ services

+ etc.

Code generation scripts can be used to create artefacts within the project tree and automate
interactions with Gradle.

If you want to create a new shell command that interacts with aloaded Grails application
instance then you should use the cr eat e- command cOmmand:

$ grails create-comand MyExanpl eConmand

Thiswill create afile called grail s- app/ commands/ PACKAGE_PATH MyExanpl eComand. gr oovy that
extends A pplicationCommand:

import grails.dev.conmands. *
cl ass MyExanpl eCommand i npl enents ApplicationComrand {

bool ean handl e(Executi onCont ext ctx) {
println "Hello Wrld"
return true
}
}

http://plugins.grails.org/
http://docs.grails.org/3.3.8/api/grails/dev/commands/ApplicationCommand.html

AN Appl i cati oncommand has access to the e ai 1 sAppl i cati on iNStance and is subject to autowiring
like any other Spring bean.

Y ou can aso inform Grails to skip the execution of soot st rap. groovy fileswith asimple
property in your command:

cl ass MyExanpl eCommand i npl enents Applicati onConmand {
bool ean ski pBootstrap = true

bool ean handl e(ExecutionCont ext ctx) {

}
}

For each appl i cati oncormand present Grails will create a shell command and a Gradle task to
invoke the appl i cati oncommand. [N the above example you can invoke the wexanpl ecormand Class
using either:

$ grails ny-exanple

Or

$ gradl e nyExanpl e
The Grailsversion is all lower case hyphen separated and excludes the "Command" suffix.

The main difference between code generation scripts and app i cat i oncormand iNstances is that
the latter has full access to the Grails application state and hence can be used to perform
tasks that interactive with the database, call into GORM etc.

In Grails 2.x Gant scripts could be used to perform both these tasks, in Grails 3.x code
generation and interacting with runtime application state has been cleanly separated.

Adding anew grails-app artifact (Controller, Tag Library, Service, etc.)

A plugin can add new artifacts by creating the relevant file within the grai 1 s- app tree.

+ grails-app
+ controllers <-- additional controllers here
+ services <-- additional services here
+ etc. <-- additional XXX here

Providing Views, Templatesand View resolution

When a plugin provides a controller it may also provide default viewsto be rendered. Thisis
an excellent way to modularize your application through plugins. Grails view resolution
mechanism will first look for the view in the application it isinstalled into and if that fails
will attempt to look for the view within the plugin. This means that you can override views
provided by a plugin by creating corresponding GSPs in the application’s grai I s- app/ vi ews
directory.

For example, consider a controller called sookcont rol 1 er that’s provided by an ‘amazon'’
plugin. If the action being executed isiist, Grailswill first look for aview called
grail s-app/ vi ews/ book/ 1 i st. gsp then if that failsit will look for the same view relative to the

plugin.

However if the view uses templates that are also provided by the plugin then the following

syntax may be necessary:

<g: render tenpl ate="fooTenpl ate" plugi n="anazon"/>

Note the usage of the pi ugi n attribute, which contains the name of the plugin where the
template resides. If thisis not specified then Grails will look for the template relative to the
application.

Excluded Artefacts

By default Grails excludes the following files during the packaging process.

°
grail s-app/ conf/ I ogback. gr oovy

® grails-app/conf/application ym (renamed to plugin. ynt)
grail s-app/ conf/spring/resources. groovy
® Everything within/src/test/*
® SCM management fileswithin «\+/. svn/=\+ and «\ */ cvs/ *\ *

The default uri vappi ngs. groovy file is not excluded, so remove any mappings that are not
required for the plugin to work. Y ou are also free to add a UrIMappings definition under a
different name which will be included. For example afile called

grails-app/controllers/ Bl ogUr | Mappi ngs. gr oovy isfine.

Thelist of excludesis extensible with the pi ugi nexci udes property:

/1 resources that are excluded from plugin packagi ng
def plugi nExcl udes = [
"grail s-app/views/error.gsp"

]

Thisis useful for example to include demo or test resources in the plugin repository, but not
include them in the final distribution.

18.4 Evaluating Conventions

Before looking at providing runtime configuration based on conventions you first need to
understand how to evaluate those conventions from a plugin. Every plugin has an implicit
appl i cati on Variable which is an instance of the GrailsApplication interface.

The aai 1 sappli cati on iNterface provides methods to eval uate the conventions within the
project and internally stores referencesto all artifact classes within your application.

Artifacts implement the GrailsClass interface, which represents a Grails resource such as a
controller or atag library. For example to get all aai i sa ass instances you can do:

for (grailsCass in application.alld asses) {
println grailsd ass. nane

aail sApplication hasafew "magic" properties to narrow the type of artefact you are
interested in. For example to access controllers you can use:

http://docs.grails.org/3.3.8/api/grails/core/GrailsApplication.html
http://docs.grails.org/3.3.8/api/grails/core/GrailsClass.html

for (controllerClass in application.controllerd asses) {
println controllerd ass. nane
}

The dynamic method conventions are as follows:

® :gasses - Retrieves al the classes for a particular artefact name. For example

application.controllerd asses.

® get*dass - Retrieves anamed class for a particular artefact. For example

application.getControllerd ass("PersonController")

® is+aass - Returnstrue if the given classis of the given artefact type. For example

application.isControllerd ass(PersonController)

The @ ai 1 sa ass interface has a number of useful methods that let you further evaluate and
work with the conventions. These include:

® getPropertyval ue - Getstheinitial value of the given property on the class
® hasproperty - Returnstrue if the class hasthe SpeCIfled property
® nhew nstance - Creates anew instance of this class.

® getname - Returns the logical name of the classin the application without the trailing
convention part if applicable

® getshort Name - Returns the short name of the class without package prefix

® getrull Nane - Returns the full name of the class in the application with the trailing convention
part and with the package name

® get PropertyNane - Returns the name of the class as a property name

® get Logi cal PropertyNane - Returns the logical property name of the classin the application
without the trailing convention part if applicable

® getnatural Name - Returns the name of the property in natural terms (e.g. 'lastName' becomes
'Last Name)

® get PackageNare - Returns the package name

For afull reference refer to the javadoc API.

18.5 Hooking into Runtime Configuration

Grails provides a number of hooks to leverage the different parts of the system and perform
runtime configuration by convention.

Hooking into the Grails Spring configuration

First, you can hook in Grails runtime configuration overriding the dow t hspri ng method from

http://docs.grails.org/3.3.8/api/grails/core/GrailsClass.html

the Plugin class and returning a closure that defines additional beans. For example the
following snippet is from one of the core Grails plugins that provides 118n support:

i nport org.springframework. web. servl et.i 18n. Cooki eLocal eResol ver

import org.springfranmework. web. servl et.i18n. Local eChangel nt er cept or

i nport org.springframework. cont ext. support. Rel oadabl eResour ceBundl eMessageSour ce
inmport grails.plugins.*

class 118nGrail sPlugin extends Plugin {
def version = "0.1"
Cl osure doWthSpring() {{->
nessageSour ce(Rel oadabl eResour ceBundl eMessageSour ce) {

basenane = "VEB-I| NF/ grail s-app/i 18n/ nessages”

| ocal eChangel nt er cept or (Local eChangel nterceptor) {
paramNane = "l ang"

| ocal eResol ver (Cooki eLocal eResol ver)
1}
}

This plugin configures the Grails messagesour ce bean and a couple of other beans to manage
Locale resolution and switching. It using the Spring Bean Builder syntax to do so.

Customizing the Servlet Environment

In previous versions of Grailsit was possible to dynamically modify the generated web. xni .
In Grails 3.x thereisno web. xni file and it is not possible to programmatically modify the
web. xm file anymore.

However, it is possible to perform the most commons tasks of modifying the Servlet
environment in Grails 3.x.

Adding New Servlets

If you want to add a new Servlet instance the ssmplest way is simply to define anew Spring
bean in the dow t hspri ng Method:

Cl osure doWthSpring() {{->
nyServl et (MyServl et)
1}

If you need to customize the servlet you can use Spring Boot’ s ServletRegistrationBean:

Cl osure doWthSpring() {{->
mySer vl et (Servl et Regi strati onBean, new MyServlet(), "/myServlet/*") {
| oadOnStartup = 2
}

1}

Adding New Servlet Filters

Just like Servlets, the smplest way to configure anew filter isto simply define a Spring
bean:

C osure doWthSpring() {{->
nyFilter(MFilter)
}

However, if you want to control the order of filter registrations you will need to use Spring
Boot’s FilterRegistrationBean:

nyFilter(FilterRegistrationBean) {

http://docs.grails.org/3.3.8/api/grails/plugins/Plugin.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/ServletRegistrationBean.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/web/servlet/FilterRegistrationBean.html

filter = bean(MyFilter)

url Patterns = ['/*"]

order = O dered. H GHEST_PRECEDENCE
}

Grails internal registered filters (o ai | svebRequest Fi l ter, Hi ddenkt t pMet hodFi | ter €LC.) are
defined by incrementing w aest_precepence by 10 thus allowing several filters to be inserted
before or between Grails filters.

Doing Post Initialisation Configuration

Sometimes it is useful to be able do some runtime configuration after the Spring
ApplicationContext has been built. In this case you can define a dow t happl i cat i onCont ext
closure property.

class Sinpl ePl ugi n extends Plugin{

def nane = "sinple"
def version = "1.1"
@verride

voi d doWt hApplicationContext () {
def sessionFactory = applicationContext.sessionFactory
/1 do something here with session factory

}
}

18.6 Adding Methods at Compile Time

Grails 3.0 makes it easy to add new traits to existing artefact types from a plugin. For
example say you wanted to add methods for manipulating dates to controllers. This can be
done by defining atrait in src/ mi n/ gr oovy:

package myplugin

@nhances("Control ler")
trait DateTrait {
Date currentDate() {
return new Date()

}
}

The @nnances annotation defines the types of artefacts that the trait should be applied to.

As an alternative to using the @nhances annotation above, you can implement a Traitlnjector
to tell Grails which artefacts you want to inject the trait into at compile time:

package nypl ugin

@Conpi | eStatic
class ControllerTraitlnjector inplenents Traitlnjector {

@verride

Class getTrait() {
SoneTr ai t

}

@verride

String[] getArtefactTypes() {
['Controller'] as String[]

}

}

The above traiti nj ect or will add the soreTrait to al controllers. The get Art ef act Types method
defines the types of artefacts that the trait should be applied to.

Applying traits conditionally

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.grails.org/3.3.8/api/grails/compiler/traits/TraitInjector.html

A Traitinjector implementation can also implement the SupportsClassNode interface to
apply traits to only those artefacts which satisfy a custom requirement. For example, if a
trait should only be applied if the target artefact class has a specific annotation, it can be
done as below

package myplugin

@Conpi | eStatic
class Annotati onBasedTraitlnjector inplements Traitlnjector, Supportsd assNode {

@verride

Class getTrait() {
SoneTr ai t

}

@verride

String[] getArtefact Types() {
["Controller'] as String[]

}

bool ean supports(C assNode cl assNode) {
return Grail sASTU il s. hasAnnot ati on(cl assNode, SoneAnnot ati on)
}
}

Above traitinjector Will add the sonetrait to only those controllers which has the
SomeAnnot at i on declared.

The framework discovers trait injectors by way of anera- 1 Ne/grails. factories descriptor that
isinthe .jar file. This descriptor is automatically generated. The descriptor generated for the
code shown above would look like this:

#Grails Factories File
grails.conpiler.traits. Traitlnjector=
nmypl ugin. Control l erTraitlnjector, nyplugin.DateTraitTraitlnjector

Due to formatting issues, above code snippet includes aline break after equal sign.

That file is generated automatically and added to the .jar file at build time. If for any reason
the application definesits own graiis. factories fileat

src/ mai n/ resour ces/ META- I NF/ grai | s. fact ori es, It ISTmportant that the trait injectors be explicitly
defined in that file. The auto-generated metadatais only reliable if the application does not
define itS OWnN src/ mai n/ r esour ces/ META- | NF/ grails.factores file.

18.7 Adding Dynamic M ethods at Runtime

The Basics

Grails plugins let you register dynamic methods with any Grails-managed or other class at
runtime. Thiswork is done in adow t hbynam cMet hods Method.

Note that Grails 3.x features newer features such astraits that are usable from code
compiled with compi 1 estati c. It is recommended that dynamic behavior is only added for
cases that are not possible with traits.

cl ass Exanpl ePl ugi n extends Plugin {
voi d doWt hDynam cMet hods() {
for (controllerClass in grailsApplication.controllerC asses) {
control I erd ass. netad ass. nyNewMet hod = {-> println "hello world" }
}
}
}

http://docs.grails.org/3.3.8/api/grails/compiler/ast/SupportsClassNode.html

In this case we use the implicit application object to get areferenceto all of the controller
classes MetaClass instances and add a new method called mynewvet hod t0 €ach controller. If
you know beforehand the class you wish the add a method to you can simply reference its
met adl ass Property.

For example we can add a new method swapcase tOj ava. I ang. Stri ng:

cl ass Exanpl ePl ugi n extends Plugin {

@verride
voi d doW t hDynami cMet hods() {
String. net adl ass. swapCase = {->
def sb = new StringBuilder()
del egat e. each {
sb << (Character.isUpperCase(it as char) ?
Char acter.tolLower Case(it as char) :
Character.toUpperCase(it as char))

}
sb.toString()
}

assert "UpAndDown" == "uPaNDJOMWN'.swapCase()

}

I nter acting with the ApplicationContext

The dow t hoynani chet hods ClOSUre gets passed the Spring Appi i cati oncont ext instance. Thisis
useful asit lets you interact with objects within it. For example if you were implementing a
method to interact with Hibernate you could use the sessi onFact ory instance in combination
with aHi ber nat eTenpl ate.

i mport org. springfranework. orm hi ber nat e3. Hi ber nat eTenpl at e
cl ass Exanpl eHi ber nat ePl ugi n ext ends Pl ugi n{
voi d doWt hDynami cMet hods() {
for (donmainC ass in grail sApplication.domainCd asses) {
domai nd ass. netad ass. static.load = { Long id->
def sf = applicationContext.sessionFactory

def tenplate = new Hi bernateTenpl at e(sf)
tenpl ate. | oad(del egate, id)

}
}

Also because of the autowiring and dependency injection capability of the Spring container
you can implement more powerful dynamic constructors that use the application context to
wire dependencies into your object at runtime:

class MyConstructorPlugin {
voi d doW t hDynam cMet hods()
for (domainClass in grail sApplication.domainC asses) {

domai nd ass. nmet ad ass. constructor = {->
return applicationContext.get Bean(domai nCl ass. nane)

}

Here we actually replace the default constructor with one that 1ooks up prototyped Spring
beans instead!

18.8 Participating in Auto Reload Events

Monitoring Resour ces for Changes

Often it is valuable to monitor resources for changes and perform some action when they
occur. Thisis how Grailsimplements advanced reloading of application state at runtime. For
example, consider this simplified snippet from the Grails ser vi cespi ugi n:

class ServicesGailsPlugin extends Plugin {

def wat chedResources = "file:./grails-app/services/**/*Service.groovy"

voi d onChange(Map<String, Object> event) {
if (event.source) {

def serviceC ass = grail sApplication.addServiceC ass(event. source)

def serviceName = "${serviced ass. propertyNane}"

beans {
"$servi ceNanme" (serviced ass. getd azz()) { bean ->

bean.autowire = true

}

}
}
}
}

First it defines wat chedresour ces @S either a String or aList of strings that contain either the
references or patterns of the resources to watch. If the watched resources specify a Groovy
file, when it is changed it will automatically be reloaded and passed into the onchange closure
in the event Obj ect.
Theevent Object defines a number of useful properties:

® event.source - 1he source of the event, either the reloaded a ass or a Spring resour ce

® cvent.ctx - The Spring Appl i cat i onCont ext iNStance

® event. plugin - The plugin object that manages the resource (usualy this)

® cvent.application - TheGailsapplication iNStance

® cvent. manager - Theaaiisp ugi nManager instance
These objects are available to help you apply the appropriate changes based on what
changed. In the "Services' example above, anew service bean isre-registered with the
Appl i cati onCont ext When one of the service classes changes.
Influencing Other Plugins
In addition to reacting to changes, sometimes a plugin needsto "influence" another.
Take for example the Services and Controllers plugins. When a service is reloaded, unless
you reload the controllers too, problems will occur when you try to auto-wire the reloaded
service into an older controller Class.
To get around this, you can specify which plugins another plugin "influences'. This means

that when one plugin detects a change, it will reload itself and then reload its influenced
plugins. For example consider this snippet from the ser vi cesa ai I sPi ugi n:

def influences = ['controllers']

Observing other plugins

If thereisa particular plugin that you would like to observe for changes but not necessary
watch the resources that it monitors you can use the "observe" property:

def observe = ["controllers"]

In this case when a controller is changed you will also receive the event chained from the
controllers plugin.

It isalso possible for aplugin to observe al loaded plugins by using a wildcard:

def observe = ["*"]

The Logging plugin does exactly this so that it can add the 1 og property back to any artefact
that changes while the application is running.

18.9 Understanding Plugin Load Order

Controlling Plugin Dependencies

Plugins often depend on the presence of other plugins and can adapt depending on the
presence of others. Thisisimplemented with two properties. Thefirst is called dependson. FoOr
example, take alook at this snippet from the Hibernate plugin:

class Hi bernateGail sPlugin {
def version = "1.0"

def dependsOn = [dataSource: "1.0",
domai nCl ass: "1.0",
i18n: "1.0",
core: "1.0"]

}

The Hibernate plugin is dependent on the presence of four plugins: the dat asour ce, domai na ass,
i 18n and core plUgINS.

The dependencies will be loaded before the Hibernate plugin and if all dependencies do not
load, then the plugin will not load.

The dependson property also supports a mini expression language for specifying version
ranges. A few examples of the syntax can be seen below:
def dependsOn

def dependsOn
def dependsOn

[foo: "* > 1.
[foo: "1.0 >
[foo: "1.0 >

o
1.17]

Sl

When the wildcard * character is used it denotes "any" version. The expression syntax also
excludes any suffixes such as-BETA, -ALPHA etc. so for example the expression "1.0 >
1.1" would match any of the following versions:

e 11

10

* 101

® 1.0.3-SNAPSHOT
* 11-BETA2
Controlling Load Order

Using dependson establishes a"hard" dependency in that if the dependency is not resolved, the
plugin will give up and won’t load. It is possible though to have a weaker dependency using
the 1 oadafter and 1 oadBef ore properties:

def loadAfter = ['controllers']

Here the plugin will be loaded after the controi1ers plugin if it exists, otherwise it will just be
loaded. The plugin can then adapt to the presence of the other plugin, for example the
Hibernate plugin has this code in itS dow t hspring closure:

if (manager?. hasGailsPlugin("controllers")) {
openSessi onl nVi ew nt er cept or (OpenSessi onl nVi ew nt erceptor) {
flushMode = Hi ber nat eAccessor. FLUSH_MANUAL
sessionFactory = sessionFactory

grail sUrl Handl er Mappi ng. i nterceptors << openSessi onl nVi ew nt er cept or

}

Here the Hibernate plugin will only register an opensessi onl nvi ewi ntercept or if the controliers
plugin has been loaded. The manager Variable is an instance of the Grail sPluginM anager
interface and it provides methods to interact with other plugins.

Y ou can aso use the 1 oadsef or e property to specify one or more plugins that your plugin
should load before:

def l|oadBefore = ['rabbitng']
Scopes and Environments
It's not only plugin load order that you can control. Y ou can also specify which

environments your plugin should be loaded in and which scopes (stages of a build). Simply
declare one or both of these propertiesin your plugin descriptor:

def environments = ['devel opment', 'test', 'nyCustonEnv']
def scopes = [excludes: ' war']

In this example, the plugin will only load in the 'development’ and 'test' environments. Nor
will it be packaged into the WAR file, because it’s excluded from the 'war' phase. This
allows devel oprrent - onl y plugins to not be packaged for production use.
The full list of available scopes are defined by the enum BuildScope, but here’s a summary:
® test - When running tests
® functional -test - When running functional tests
® un - for run-app and run-war

® war - When packaging the application asa WAR file

® a1 - plugin appliesto al scopes (default)

http://docs.grails.org/3.3.8/api/grails/plugins/GrailsPluginManager.html
http://docs.grails.org/3.3.8/api/grails/util/BuildScope.html

Both properties can be one of:
® astring - asoleinclusion
® alist - alist of environments or scopes to include

® amap - for full control, with ‘includes and/or 'excludes keys that can have string or list
values

For example,

def environnents = "test"

will only include the plugin in the test environment, whereas

def environments = ["devel opnent", "test"]

will include it in both the development and test environments. Finally,

def environments = [includes: ["devel opnent", "test"]]

will do the same thing.

18.10 The Artefact API

Y ou should by now understand that Grails has the concept of artefacts: special types of
classes that it knows about and can treat differently from normal Groovy and Java classes,
for example by enhancing them with extra properties and methods. Examples of artefacts
include domain classes and controllers. What you may not be aware of isthat Grails allows
application and plugin developers access to the underlying infrastructure for artefacts, which
means you can find out what artefacts are available and even enhance them yourself. You
can even provide your own custom artefact types.

18.10.1 Asking About Available Artefacts

As aplugin developer, it can be important for you to find out about what domain classes,
controllers, or other types of artefact are available in an application. For example, the
Elasticsearch plugin needs to know what domain classes exist so it can check them for any
sear chabl e properties and index the appropriate ones. So how doesit do it? The answer lies
with the grai 1 sappl i cati on Object, and instance of GrailsApplication that’s available
automatically in controllers and GSPs and can be injected everywhere el se.

The grai 1 sapplicati on Object has several important properties and methods for querying
artefacts. Probably the most common is the one that gives you all the classes of a particular
artefact type:

for (cls in grailsApplication.<artefactType>C asses) {

}

In this case, artef act Type iSthe property name form of the artefact type. With core Grails you
have:

® domain

https://grails.org/plugins.html#plugin/elasticsearch
http://docs.grails.org/3.3.8/api/grails/core/GrailsApplication.html

¢ controller

® tagLib

® service

® codec

® bootstrap

* urlMappings

So for example, if you want to iterate over all the domain classes, you use:

for (cls in grailsApplication.domind asses) {

}

and for URL mappings.

for (cls in grailsApplication.url MappingsC asses) {

}

Y ou need to be aware that the objects returned by these properties are not instances of Class.
Instead, they are instances of GrailsClass that has some particularly useful properties and
methods, including one for the underlying a ass:

® shortnane - the class name of the artefact without the package (equivalent of a ass. si npl enane).

® | ogi cal Proper tynane - the artefact name in property form without the 'type' suffix. So
MG eat Control | er DECOMES 'myGreat'.

® ismstract() - aboolean indicating whether the artefact class is abstract or not.
® getPropertyval ue(name) - Feturns the value of the given property, whether it’s a static or an
instance one. Thisworks best if the property isinitialised on declaration, e.g. static

transactional = true.

The artefact API aso allows you to fetch classes by name and check whether aclassisan
artefact:

® get<type>Class(String name)

® s<type>Class(Class clazz)
The first method will retrieve the o ai 1 sa ass instance for the given name, e.g.
'MyGreatController'. The second will check whether aclassis a particular type of artefact.

For example, YOU CaN USE grai | sApplication.isControllerd ass(org.exanpl e. MyGreat Control | er) to
check whether wa eat control 1er iSin fact acontroller.

18.10.2 Adding Your Own Artefact Types

Plugins can easily provide their own artefacts so that they can easily find out what
implementations are available and take part in reloading. All you need to do is create an

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
http://docs.grails.org/3.3.8/api/grails/core/GrailsClass.html

Artefact Handl er IMplementation and register it in your main plugin class:

class MyGrail sPlugin {
def artefacts = [org.somewhere. MArtef act Handl er]

}

Theartefacts list can contain either handler classes (as above) or instances of handlers.

So, what does an artefact handler look like? Well, put smply it is an implementation of the
ArtefactHandler interface. To make life abit easier, there is a skeleton implementation that
can readily be extended: ArtefactHandlerAdapter.

In addition to the handler itself, every new artefact needs a corresponding wrapper class that
implements GrailsClass. Again, skeleton implementations are available such as
AbstractlnjectableGrailsClass, which is particularly useful asit turns your artefact into a
Spring bean that is auto-wired, just like controllers and services.

The best way to understand how both the handler and wrapper classes work isto ook at the
Quartz plugin:

® GrailsJobClass

® DefaultGrailsJobClass

* JobArtefactHandler

Another exampleis the Shiro plugin which adds arealm artefact.

19 Grailsand Spring

This section is for advanced users and those who are interested in how Grails integrates with
and builds on the Spring Framework. It is aso useful for plugin developers considering
doing runtime configuration Grails.

19.1 Configuring Additional Beans
Using the Spring Bean DSL

Y ou can easily register new (or override existing) beans by configuring themin
grail s-app/ conf/spring/resources. gr oovy which uses the Grails_&gri ng DSL. Beans are defined
inside aveans property (a Closure):

beans = {
/] beans here
}

As a simple example you can configure a bean with the following syntax:

i mport ny. conpany. MyBeanl npl

beans = {

nyBean(MyBeanl! npl) {
someProperty = 42

http://docs.grails.org/3.3.8/api/grails/core/ArtefactHandler.html
http://docs.grails.org/3.3.8/api/grails/core/ArtefactHandlerAdapter.html
http://docs.grails.org/3.3.8/api/grails/core/GrailsClass.html
http://docs.grails.org/3.3.8/api/org/grails/core/AbstractInjectableGrailsClass.html
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/GrailsJobClass.java
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/DefaultGrailsJobClass.java
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/JobArtefactHandler.groovy
http://github.com/pledbrook/grails-shiro
http://spring.io/

ot her Property = "bl ue"

}

Once configured, the bean can be auto-wired into Grails artifacts and other classes that
support dependency injection (for example soot st r ap. gr oovy and integration tests) by
declaring a public field whose name is your bean’s name (in this case nyBgean):

cl ass Exanpl eController {
def nyBean
}

Using the DSL has the advantage that you can mix bean declarations and logic, for example
based on the environment:

inmport grails.util.Environment
i nport my. conpany. nock. Mockl npl

i nport my. conpany. MyBeanl npl

beans = {
swi tch(Envi ronment. current) {
case Environment. PRODUCTI ON:

nyBean(MyBeanl npl) {
someProperty = 42
ot her Property = "bl ue"

}
br eak

case Environment. DEVELOPMENT:
nmyBean(Mockl npl) {
someProperty = 42
ot her Property = "bl ue"

br eak

}

The @ ai 1 sappl i cati on Object can be accessed with the appi i cati on Variable and can be used to
access the Grails configuration (amongst other things):

inmport grails.util.Environnment
i mport ny.conpany. nock. Mockl npl
i mport ny. conpany. MyBeanl npl

beans = {
if (application.config.ny.conpany. nockService) {
nyBean(Mockl npl) {
someProperty = 42
ot her Property = "bl ue"

} else {

nyBean(MyBeanl! npl) {
someProperty = 42

ot her Property = "bl ue"

If you define abean in resour ces. groovy With the same name as one previously registered by
Grails or an installed plugin, your bean will replace the previous registration. Thisisa
convenient way to customize behavior without resorting to editing plugin code or other
approaches that would affect maintainability.

Using XML

Beans can also be Configured using Qgrails-app/conf/spring/resources.xm . IN earlier versions
of Grailsthisfile was automatically generated for you by the run- app Script, but the DSL in
resour ces. groovy 1S the preferred approach now so it isn't automatically generated now. But it
isstill supported - you just need to create it yourself.

Thisfileistypical Spring XML file and the Spring documentation has an excellent reference
on how to configure Spring beans.

The nysean bean that we configured using the DSL would be configured with this syntax in
the XML file:

<bean i d="nmyBean" cl ass="ny. conpany. MyBeanl npl ">
<property nanme="soneProperty" val ue="42" />
<property nane="ot her Property" val ue="bl ue" />
</ bean>

Like the other bean it can be auto-wired into any class that supports dependency injection:

class Exanpl eControl ler {

def nyBean
}

Referencing Existing Beans

Beans declared in resources. groovy OF resources. xni Can reference other beans by convention.
For example if you had a sookservi ce Class its Spring bean name would be bookser vi ce, SO your
bean would referenceit like thisin the DSL:

beans = {

nmyBean(MyBeanl npl) {
someProperty = 42
ot her Property = "bl ue"
bookService = ref("bookService")

}

or likethisin XML:

<bean id="nyBean" cl ass="ny. conpany. MyBeanl npl ">
<property nane="someProperty" val ue="42" />
<property nane="ot her Property" val ue="bl ue" />
<property nanme="bookService" ref="bookService" />
</ bean>

The bean needs a public setter for the bean reference (and also the two simple properties),
which in Groovy would be defined like this:

package my. conpany
cl ass MyBeanl mpl {
I nteger someProperty

String otherProperty
BookSer vi ce bookService // or just "def bookService"

}
or in Javalike this:

package ny.conpany;
cl ass MyBeanl npl {
private BookServi ce bookService;
private Integer soneProperty,;
private String otherProperty;
public void setBookServi ce(BookService theBookService) {
t hi s. bookServi ce = t heBookServi ce;
}

public void set SomeProperty(lnteger someProperty) {
this.someProperty = soneProperty;
}

public void set Ot herProperty(String otherProperty) {

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/beans.html#beans-basics

this.otherProperty = otherProperty;
}
}

Usingref (in XML or the DSL) isvery powerful since it configures a runtime reference, so
the referenced bean doesn’t have to exist yet. Aslong asit’sin place when the final
application context configuration occurs, everything will be resolved correctly.

For afull reference of the available beans see the plugin reference in the reference guide.

19.2 Runtime Spring with the Beans DSL

This Bean builder in Grails aimsto provide a simplified way of wiring together
dependencies that uses Spring at its core.

In addition, Spring’s regular way of configuration (via XML and annotations) is static and
difficult to modify and configure at runtime, other than programmatic XML creation which
is both error prone and verbose. Grails BeanBuilder changes al that by making it possible
to programmatically wire together components at runtime, allowing you to adapt the logic
based on system properties or environment variables.

This enables the code to adapt to its environment and avoids unnecessary duplication of
code (having different Spring configs for test, development and production environments)

The BeanBuilder class

Grails provides a grails.spring.BeanBuilder class that uses dynamic Groovy to construct
bean definitions. The basics are as follows:

i nport org. apache. commons. dbcp. Basi cDat aSour ce

inport org.grails.orm hibernate. Configurabl eLocal Sessi onFact or yBean
i mport org.springfranmework. cont ext. Appl i cati onCont ext

i nport grails.spring.BeanBuil der

def bb = new BeanBui |l der ()
bb. beans {

dat aSour ce(Basi cDat aSour ce) {
driverd assName = "org. h2.Driver"

url = "jdbc: h2: nem grail sDB"
usernanme = "sa"
password = ""

}

sessi onFact ory(Confi gur abl eLocal Sessi onFact or yBean) {
dat aSource = ref (' dataSource')
hi ber nat eProperti es = ["hi bernate. hbn2ddl . auto": "create-drop",
"hi ber nat e. show_sql ": "true"]
}
}

Appl i cati onCont ext appCont ext = bb. createApplicationContext ()

Within p' Ugl ns and the grai | s-app/ conf/spring/resources. gr oovy fileyou don’t need to create a
new instance of seansui | der . INStead the DSL isimplicitly available inside the dow t hspring
and beans blocks respectively.

This example shows how you would configure Hibernate with a data source with the
BeanBui | der Class.

Each method call (in this case dat asour ce @nd sessi onFact ory callS) maps to the name of the

http://docs.grails.org/3.3.8/api/grails/spring/BeanBuilder.html
http://docs.grails.org/3.3.8/api/grails/spring/BeanBuilder.html

bean in Spring. The first argument to the method is the bean’s class, whilst the last argument
isablock. Within the body of the block you can set properties on the bean using standard
Groovy syntax.

Bean references are resolved automatically using the name of the bean. This can be seenin
the example above with the way the sessi onFact ory bean resolves the dat asour ce reference.

Certain special properties related to bean management can also be set by the builder, as seen
in the following code:

sessi onFact ory(Confi gur abl eLocal Sessi onFact oryBean) { bean ->
/1 Autow ring behaviour. The other option is 'byType'. <<autow re>>

bean. autowi re = ' byNane'
/] Sets the initialisation method to "init'. [init-method]
bean.initMethod = "init'

/1 Sets the destruction nethod to 'destroy'. [destroy-nethod]
bean. destroyMet hod = ' destroy’
/Il Sets the scope of the bean. <<scope>>

bean. scope = 'request’
dat aSource = ref (' dataSource')
hi ber nat eProperties = ["hi bernate. hbn2ddl . auto": "create-drop",

"hi ber nat e. show_sql ": "true"]

}

The strings in square brackets are the names of the equivalent bean attributesin Spring's
XML definition.

Using BeanBuilder with SpringMVC

Include the grai i s-spring-<version>.jar filein your classpath to use BeanBuilder in aregular
Spring MV C application. Then add the following <cont ext - par am- Values to your
/ VEB- | NF/ web. xri file:

<cont ext - par anp

<par am nane>cont ext Confi gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ appl i cat i onCont ext . gr oovy</ par am val ue>
</ cont ext - par an®

<cont ext - par anp
<par am nane>cont ext O ass</ par am nane>
<par am val ue>
grails.web. servlet.context. G ail sWebAppl i cati onCont ext
</ par am val ue>
</ cont ext - par an»

Then create a/ ves- | NF/ appl i cati onCont ext . gr oovy file that does the rest:

i nport org. apache. commons. dbcp. Basi cDat aSour ce

beans {
dat aSour ce(Basi cDat aSour ce) {
driverd assName = "org. h2.Driver"

url = "jdbc: h2: nem grail sDB"
usernane = "sa"
password = ""

}
L oading Bean Definitions from the File System

Y ou can use the seansui 1 der Classto load external Groovy scripts that define beans using the
same path matching syntax defined here. For example:

def bb = new BeanBui |l der ()
bb. | oadBeans(" cl asspat h: * Spri ngBeans. gr oovy")

def applicationContext = bb.createApplicati onContext()

Here the Beansui 1 der 10ads all Groovy files on the classpath ending with spri nggeans. gr oovy and
parses them into bean definitions. An example script can be seen below:

i nport org. apache. commons. dbcp. Basi cDat aSour ce
import org.grails.orm hibernate. Configurabl eLocal Sessi onFact or yBean

beans {

dat aSour ce(Basi cDat aSour ce) {
driverd assName = "org. h2.Driver"

url = "jdbc: h2: nem grail sDB"
usernane = "sa"
password = ""

}

sessi onFact or y(Confi gur abl eLocal Sessi onFact or yBean) {
dat aSour ce = dat aSour ce
hi ber nat eProperti es = ["hi bernate. hbn2ddl . auto": "create-drop"
"hi ber nat e. show_sql ": "true"]

}

Adding Variablesto the Binding (Context)

If you' re loading beans from a script you can set the binding to use by creating a Groovy
Bi ndi ng-

def bindi ng = new Bi ndi ng()

bi ndi ng. nexSi ze = 10000

bi ndi ng. product G oup = 'finance

def bb = new BeanBui |l der ()

bb. bi ndi ng = bi ndi ng

bb. | oadBeans(" cl asspat h: * Spri ngBeans. gr oovy")

def ctx = bb.createApplicationContext()

Then you can access the maxsi ze and product & oup propertiesin your DSL files.

19.3 The BeanBuilder DSL Explained

Using Constructor Arguments

Constructor arguments can be defined using parameters to each bean-defining method. Put
them after the first argument (the Class):

bb. beans {
exanpl eBean(MyExanpl eBean, "firstArgument”, 2) {
soneProperty = [1, 2, 3]
}

}

This configuration corresponds to a wexanpl esean With a constructor that looks like this:

MyExanpl eBean(String foo, int bar) {
}

Configuring the BeanDefinition (Using factory methods)

The first argument to the closure is areference to the bean configuration instance, which you
can use to configure factory methods and invoke any method on the AbstractBeanDefinition
class:

bb. beans {
exanpl eBean(MyExanpl eBean) { bean ->

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

bean. f act oryMet hod = "getl nstance"
bean. singl eton = fal se
soneProperty = [1, 2, 3]
}
}

As an aternative you can also use the return value of the bean defining method to configure
the bean:

bb. beans {
def exanpl e = exanpl eBean(MyExanpl eBean) {
sorreProperty =11, 2, 3]

exanpl e. fact oryMet hod = "getl nstance"

}
Using Factory beans

Spring defines the concept of factory beans and often abean is created not directly from a
new instance of a Class, but from one of these factories. In this case the bean has no Class
argument and instead you must pass the name of the factory bean to the bean defining
method:

bb. beans {

nyFact or y(Exanpl eFact or yBean) {
sonmeProperty = [1, 2, 3]
}

nmyBean(nyFactory) {
name = "bl ah"
}

}

Another common approach is provide the name of the factory method to call on the factory
bean. This can be done using Groovy’s named parameter syntax:

bb. beans {

nyFact or y(Exanpl eFact or yBean) {
soneProperty = [1, 2, 3]
}

nmyBean(nyFactory: "getlnstance") {
nane = "bl ah"
}

}

Here the get I nst ance method on the Exanpl eFact or yBean bean will be called to create the nmyBean
bean.

Creating Bean References at Runtime

Sometimes you don’t know the name of the bean to be created until runtime. In this case
you can use a string interpolation to invoke a bean defining method dynamically:

def beanNane = "exanpl e"
bb. beans {
" ${ beanNane} Bean" (MyExanpl eBean) {
soneProperty = [1, 2, 3]
}

}

In this case the beannare Variable defined earlier is used when invoking a bean defining
method. The example has a hard-coded value but would work just as well with a name that
is generated programmatically based on configuration, system properties, etc.

Furthermore, because sometimes bean names are not known until runtime you may need to
reference them by name when wiring together other beans, in this case using the ret method:

def beanNanme = "exanpl e"
bb. beans {

" ${ beanNane} Bean" (MyExanpl eBean) {
soneProperty = [1, 2, 3]

}

anot her Bean(Anot her Bean) {

exanmpl e = ref ("${beanNane}Bean")
}
}

Here the example property of anot her Bean IS Set using a runtime reference to the exanpi egean.
Theret method can also be used to refer to beans from a parent appl i cati oncont ext that is
provided in the constructor of the seansui I der :

Appl i cati onContext parent = ...//
def bb = new BeanBui | der (parent)
bb. beans {

anot her Bean(Anot her Bean) {
exanpl e = ref ("${beanNane}Bean", true)
}

}

Here the second parameter « rue Specifies that the reference will 1ook for the bean in the
parent context.

Using Anonymous (Inner) Beans

Y ou can use anonymous inner beans by setting a property of the bean to ablock that takes
an argument that is the bean type:
bb. beans {

mar ge(Person) {
name = "Marge"

husband = { Person p ->
name = "Honmer"
age = 45

props = [overwei ght: true, height: "1.8nf]

children = [ref("bart'), ref('lisa')]

}

bart (Person) {
nane = "Bart"
age = 11

}

lisa(Person) {
name = "Lisa"
age = 9

}

}

In the above example we set the mar ge bean’s husband property to a block that creates an
inner bean reference. Alternatively if you have a factory bean you can omit the type and just
use the specified bean definition instead to setup the factory:

bb. beans {
per sonFact or y(Per sonFact ory)

mar ge(Person) {

name = "Marge"

husband = { bean ->
bean. f act oryBean = "personFactory"
bean. f act oryMet hod = "new nst ance"
name = "Honer"

age = 45

props = [overwei ght: true, height: "1.8nl]
children = [ref("bart'), ref('lisa')]

}
Abstract Beans and Parent Bean Definitions

To create an abstract bean definition define abean without a a ass parameter:

class Hol yGrail Quest {

def start() { println "lets begin" }
}
cl ass Kni ght Of TheRoundTabl e {

String nane

String | eader

Hol yGrai | Quest quest

Kni ght O TheRoundTabl e(String nane) {

this. nane = nane
}

def enbarkOnQuest () {
quest.start()
}

}

inmport grails.spring.BeanBuil der

def bb = new BeanBui |l der ()

bb. beans {
abstract Bean {
| eader = "Lancel ot"
}
}

Here we define an abstract bean that has ai eader property with the value of “Lancei ot . TO use
the abstract bean set it as the parent of the child bean:

bb. beans {
dﬁést (Hol yGrai | Quest)
kni ght s(Kni ght Of TheRoundTabl e, "Canelot") { bean ->

bean. parent = abstract Bean
quest = ref('quest')

When using a parent bean you must set the parent property of the bean before setting any
other properties on the bean!

If you want an abstract bean that has a a ass specified you can do it this way:

inport grails.spring.BeanBuil der

def bb = new BeanBui | der ()
bb. beans {

abst ract Bean(Kni ght Of TheRoundTabl e) { bean ->
bean. ' abstract' = true
| eader = "Lancel ot"

}

quest (Hol yGrai | Quest)

kni ghts("Canel ot") { bean ->
bean. parent = abstract Bean
quest = quest

}

In this example we create an abstract bean of type kni ght o TheroundTabl e @and use the bean

argument to set it to abstract. Later we define a knights bean that has no a ass defined, but
inherits the a ass from the parent bean.

Using Spring Namespaces

Since Spring 2.0, users of Spring have had easier accessto key features via XML
namespaces. Y ou can use a Spring namespace in BeanBuilder by declaring it with this
syntax:

xm ns context:"http://ww. springfranmework. org/schema/ cont ext"

and then invoking a method that matches the names of the Spring namespace tag and its
associated attributes:

cont ext.' conponent -scan' (' base-package': "ny.conpany. donmai n")

Y ou can do some useful things with Spring namespaces, such as looking up a JINDI
resource:

xm ns jee:"http://ww.springfranework. org/schema/jee"

jee.'jndi-lookup' (id: "dataSource", 'jndi-nane': "java:conp/env/ nmyDataSource")

This example will create a Spring bean with the identifier dat asour ce by performing a JINDI
lookup on the given INDI name. With Spring namespaces you also get full accessto all of
the powerful AOP support in Spring from BeanBuilder. For example given these two
classes:

class Person {

int age
String name

voi d birthday() {
++age;
}

}
cl ass BirthdayCardSender {

Li st peopleSentCards = []

voi d onBirthday(Person person) {
peopl eSent Cards << person

}

Y ou can define an aspect that uses a pointcut to detect whenever the vi rthday() method is
called:

xm ns aop: "http://ww. springfranework. or g/ schena/ aop”

fred(Person) {
name = "Fred"
age = 45

}

bi rt hdayCar dSender Aspect (Bi rt hdayCar dSender)

aop {
config("proxy-target-class": true) {
aspect (i d: "sendBirthdayCard", ref: "birthdayCardSenderAspect") {
after nethod: "onBirthday",
poi ntcut: "execution(void ..Person.birthday()) and this(person)"

19.4 Property Placeholder Configuration

Grails supports the notion of property placeholder configuration through an extended
version of Spring’'s PropertyPlaceholderConfigurer.

Settings defined in either ConfigSlurper scripts or Java properties files can be used as
placeholder valuesfor Spring configuration in grai | s-app/ conf/spring/resources. xm and
grail s-app/ conf/spring/ resour ces. groovy. FOF example glven the followi ng entriesin

grail s-app/ conf/ appl i cation. groovy (or an externalized Config):

dat abase. dri ver="com nysql . j dbc. Dri ver"
dat abase. dbname="nysql : nydb"

Y ou can then specify placeholdersin resources. xm as follows using the familiar ${..} syntax:

<bean i d="dat aSour ce"
cl ass="org. spri ngfranmewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >

<property nanme="driverd assNanme" >
<val ue>${ dat abase. dri ver} </ val ue>

</ property>

<property nanme="url">
<val ue>j dbc: ${ dat abase. dbnane} </ val ue>

</ property>

</ bean>

To specify placeholdersin resour ces. groovy YOU Need to use single quotes:

dat aSour ce(org. springframework. j dbc. dat asour ce. Dri ver Manager Dat aSour ce) {
driverd assName = ' ${dat abase. driver}'
url = 'jdbc: ${dat abase. dbnane}’

}

This sets the property value to aliteral string which islater resolved against the config by
Spring’ s PropertyPlaceholderConfigurer.

A better option for resour ces. gr oovy isto access propertiesthrough the grail sApplication
variable:

dat aSour ce(or g. spri ngframewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce) {
driverC assNanme = grail sApplication.config.database.driver
url = "jdbc\: ${grail sApplication. config. database. dbnane}"

}

Using this approach will keep the types as defined in your config.

19.5 Property Override Configuration

Grails supports setting of bean properties via configuration.

Y ou define abeans block with the names of beans and their values:

beans {
bookService {
webServi ceURL = "http://ww. amazon. conf
}

}

The general format is.

<<bean name>>. <<property nane>> = <<val ue>>

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/ConfigSlurper.html

The same configuration in a Java properties file would be:

beans. bookSer vi ce. webSer vi ceURL=ht t p: / / ww. anazon. com

19.6 Spring Boot Actuators

Spring Boot Actuator endpoints allow you to monitor and interact with your application.
Spring Boot includes a number of built-in endpoints. For example the neai t h endpoint
provides basic application health information.

These endpoints are disabled by default since Grails 3.1.8.
Y ou can enable actuator endpoints in your appi i cation. yni as follows:

grails-app/conf/application.yml

endpoi nts:
enabl ed: true

20 Scaffolding

Scaffolding lets you generate some basic CRUD interfaces for a domain class, including:
® The necessary views
® Controller actions for create/read/update/delete (CRUD) operations

The way for an application to express a dependency on the scaffolding pluginis by
including the following in bui 1 d. gradi e.

dependenci es {
1.
conpile "org.grails. plugins: scaffol di ng"
...
}

Dynamic Scaffolding

The simplest way to get started with scaffolding isto enable it by setting the scaff ol
property in the controller to a specific domain class:

cl ass BookController {
static scaffold = Book // O any other domain class such as "Author", "Publisher"

}
With this configured, when you start your application the actions and views will be
autogenerated at runtime. The following actions are dynamically implemented by default by
the runtime scaffolding mechanism:

® index

®* show

* edit

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html

* delete
® create
* save

® update

A CRUD interface will also be generated. To access this open http: //1 ocal host : 8080/ book 1N &
browser.

Note: The old alternative of defining scaf ol d property:

cl ass BookController {
static scaffold = true
}

isno longer supported above Grails 3.0.

If you prefer to keep your domain model in Java and mapped with Hibernate you can still
use scaffolding, simply import the domain class and set its name as the scaf f ol ¢ @rgument.

Y ou can add new actions to a scaffolded controller, for example:

cl ass BookController {
static scaffold = Book

def changeAut hor () {
def b = Book. get(parans.id)
b. aut hor = Aut hor. get (parans["author.id"])
b. save()

/1 redirect to a scaffolded action
redi rect (action: show)

}

Y ou can also override the scaffolded actions:

cl ass BookController {
static scaffold = Book

/1 overrides scaffolded action to return both authors and books
def index() {
[bookl nst anceLi st: Book.list(),
bookl nst anceTot al : Book. count (),
aut hor I nstanceLi st: Author.list()]

}

def show() {
def book = Book. get (parans.id)
log.error("{}", book)
[bookl nst ance : book]

}

}

All of thisiswhat is known as "dynamic scaffolding” where the CRUD interfaceis
generated dynamically at runtime.

By default, the size of text areasin scaffolded views is defined in the CSS, so adding 'rows
and 'cols attributes will have no effect.

Also, the standard scaffold views expect model variables of the form
<pr oper t yName>I nst anceLi st TOr COlleCtions and <pr oper t yname>1 nst ance fOr single instances. It's

http://localhost:8080/book

tempting to use properties like 'books' and 'book’, but those won’t work.
Static Scaffolding

Grails lets you generate a controller and the views used to create the above interface from
the command line. To generate a controller type:

grails generate-controller Book

or to generate the views:

grails generate-view Book

or to generate everything:

grails generate-all Book

If you have adomain classin a package or are generating from a Hibernate mapped class
remember to include the fully qualified package name:

grails generate-all com bookst ore. Book
Customizing the Generated Views

The views adapt to Validation constraints. For example you can change the order that fields
appear in the views simply by re-ordering the constraints in the builder:

def constraints = {
title()
rel easeDat e()

}

Y ou can aso get the generator to generate lists instead of text inputs if you use the i nii st
constraint:

def constraints = {
title()
category(inList: ["Fiction", "Non-fiction", "Biography"])
rel easeDat e()

}

Or if you use the range constraint on a number:

def constraints = {
age(range: 18. . 65)
}

Restricting the size with a constraint also effects how many characters can be entered in the
dview:

def constraints = {
nane(size: 0..30)

The Fields Plugin

The Grails scaffolding templates make use of the The Fields Plugin. Once you’ ve generated
the scaffold views, you can customize the forms and tables using the Tagi i b provided by the
plugin (see the Fields plugin docs for details).

<% - Cenerate an HTM. table from bookl nstanceLi st, showing only '"title' and 'category' colums --%

https://grails.org/plugins.html#plugin/fields
http://grails3-plugins.github.io/fields/snapshot/

<f:table collection="bookl nstanceLi st" properties="["title', 'category']"/>
Customizing the Scaffolding templates

The templates used by Grails to generate the controller and views can be customized by
installing the templates with the install-templ ates command.

21 Deployment

Grails applications can be deployed in a number of ways, each of which hasits pros and
cons.

21.1 Standalone

"grailsrun-app"

Y ou should be very familiar with this approach by now, since it is the most common method
of running an application during the development phase. An embedded Tomcat server is
launched that |oads the web application from the devel opment sources, thus allowing it to
pick up any changes to application files.

Y ou can run the application in the production environment using:
grails prod run-app

Y ou can run the app using the voot rRun Gradle task. The next command uses the Gradle
Wrapper.

./ gradl ew boot Run
Y ou can specify an environment supplying grai i s. env System property.

./ gradl ew -Dgrails.env=prod boot Run

Runnable WAR or JAR file

Another way to deploy in Grails 3.0 or above isto use the new support for runnable JAR or
WAR files. To create runnable archives, run graiis package:

grail s package
Alternatively, you could use the assemvi e Gradle task.
./ gradl ew assenbl e

Y ou can then run either the WAR file or the JAR using your Javainstallation:

java -Dgrails.env=prod -jar build/libs/nywar-0.1.war (or .jar)

A TAR/ZIP distribution

https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html

Note: TAR/ZIP distribution assembly has been removed from Grails 3.1.

21.2 Container Deployment (e.g. Tomcat)
Grails apps can be deployed to a Servlet Container or Application Server.
WAR file

A common approach to Grails application deployment in production isto deploy to an
existing Servlet container viaa WAR file. Containers alow multiple applications to be
deployed on the same port with different paths.

Creating aWAR file is as simple as executing the war command:

grails war
Thiswill produce aWAR file that can be deployed to a container, in the bui i da/1ibs directory.

Note that by default Grails will include an embeddable version of Tomcat inside the WAR
file so that it is runnable (see the previous section), this can cause problems if you deploy to
adifferent version of Tomcat. If you don’t intend to use the embedded container then you
should change the scope of the Tomcat dependencies to provi ded prior to deploying to your
production container in bui i d. gradie:

provi ded "org. springframework. boot: spring-boot-starter-tontat”

Application servers

Ideally you should be able to ssmply drop aWAR file created by Grailsinto any application
server and it should work straight away. However, things are rarely ever thissimple. The
Grails website contains alist of application serversthat Grails has been tested with, along
with any additional steps required to get a Grails WAR file working.

21.3 Deployment Configuration Tasks

Settingup HTTPS and SSL certificatesfor standalone deployment

To configure an SSL certificate and to listen on an HTTPS port instead of HTTP, add
properties like these to appi i cati on. yni :

server:

port: 8443 # The port to listen on

ssl:
enabl ed: true # Activate HTTPS npde on the server port
key-store: <the-|ocation-of-your-keystore> # e.g. /etc/toncat7/ keystore/tontat. keystore
key- st or e- passwor d: <your - key- st or e- passwor d> # e.g. changeit
key-alias: <your-key-alias> # e.g. tontat

key- password: <usual | y-the-same- as-your - key- st or e- passwor d>

These settings control the embedded Tomcat container for a production deployment.
Alternatively, the properties can be specified on the command-line. Example:

- Dserver. ssl . enabl ed=true -Dserver. ssl.key-store=/path/to/keystore.

Configuration of both an HTTP and HTTPS connector via application propertiesis not
supported. If you want to have both, then you'll need to configure one of them

http://grails.org/Deployment

programmatically. (More information on how to do this can be found in the how-to guide
below.)

There are other relevant settings. Further reference:

® Spring Boot: How to configure SSL. on embedded servlet containers

®* Spring Boot: Common Application Properties

22 Contributing to Grails

Grailsis an open source project with an active community and we rely heavily on that
community to help make Grails better. As such, there are various ways in which people can
contribute to Grails. One of these is by writing useful plugins and making them publicly
available. In this chapter, we'll look at some of the other options.

22.1 Report Issuesin Github'sissuetracker

Grails uses Github to track issuesin the core framework. Similarly for its documentation
thereis a separate tracker. If you' ve found a bug or wish to see a particular feature added,
these are the places to start. You'll need to create a (free) github account in order to either
submit an issue or comment on an existing one in either of these.

When submitting issues, please provide as much information as possible and in the case of
bugs, make sure you explain which versions of Groovy, Grails and various plugins you are
using. Other environment details - OS version, JDK, Gradle etc. should also be included.
Also, an issue is much more likely to be dealt with if you upload a reproducible sample
application on a github repository and provide alink in the issue.

Reviewing issues
There are quite afew old issuesin github, some of which may no longer be valid. The core
team can’'t track down these alone, so a very simple contribution that you can make isto

verify one or two issues occasionally.

Which issues need verification? Going to the issue tracker will display all issues that haven't
been resolved.

Once you' ve verified an issue, smply add a short comment explaining what you found. Be
sure to metion your environment details and grails version.

22.2 Build From Source and Run Tests

If you'reinterested in contributing fixes and features to any part of grails, you will haveto
learn how to get hold of the project’s source, build it and test it with your own applications.
Before you start, make sure you have:

* A JDK (7 or above)

* Aqgitclient

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://github.com/grails/grails-core/issues
https://github.com/grails/grails-doc/issues
https://github.com/grails/grails-core/issues?q=is%3Aopen+is%3Aissue

Once you have al the pre-requisite packages installed, the next step is to download the
Grails source code, which is hosted at GitHub in several repositories owned by the "grails’
GitHub user. Thisisasimple case of cloning the repository you’ re interested in. For
example, to get the core framework run:

git clone http://github.conm grails/grails-core.git

Thiswill create a"grails-core” directory in your current working directory containing all the
project source files. The next step isto get a Grails installation from the source.

Creating a Grailsinstallation

If you look at the project structure, you' |l see that it doesn’t look much like a standard
aral Ls_HoVE installation. But, it’s very ssmpleto turn it into one. Just run this from the root
directory of the project:

./gradlew install

Thiswill fetch all the standard dependencies required by Grails and then build a erai Ls_Hove
installation. Note that this target skips the extensive collection of Grailstest classes, which
can take some time to complete.

Once the above command has finished, simply set the arai Ls_Hove environment variable to
the checkout directory and add the "bin" directory to your path. When you next type grai i s
command to run, you'll be using the version you just built.

If you are using SDKMAN then that can also be used to work with thislocal installation via
the following:

sdk install grails dev /path/to/grails-core

Now you will have adev version in your local which you can use to test your features.

Running the test suite

All you have to do to run the full suite of testsis:

./ gradl ew test

These will take awhile (15-30 mins), so consider running individual tests using the
command line. For example, to run the test Spec si narypi ugi nspec SIMply execute the
following command:

./gradlew :grails-core:test --tests *.BinaryPl ugi nSpec

Note that you need to specify the sub-project that the test case resides in, because the
top-level "test" target won't work....

Developing in IntelliJ IDEA

Y ou need to run the following gradle task:

./ gradl ew i dea

Then open the project file which is generated in IDEA. Simple!

http://github.com
http://github.com/grails
http://github.com/grails
http://sdkman.io

Developing in STS/ Eclipse

Y ou need to run the following gradle task:

./ gradl ew cl eanEcl i pse eclipse

Before importing projects to STS do the following action:

Edit grails-scripts.classpath and remove the line " <classpathentry kind="src"
path="../scripts'/>".

Use "ImportGeneral Existing Projects into Workspace™ to import all projectsto STS. There
will be afew build errors. To fix them do the following:

Add the springloaded-core JAR filein
$GRAILS HOME/lib/org.springsource.springloaded/springl oaded-core/jars to grails-core’s

classpath.
Remove "src/test/groovy” from grails-plugin-testing’ s source path GRECL I PSE-1067

Add the jsp-api JAR filein $GRAILS HOME/lib/javax.servlet.jsp/jsp-api/jars to the
classpath of grails-web

Fix the source path of grails-scripts. Add linked source folder linking to "../scripts’. If you
get build errorsin grails-scripts, do "../gradlew cleanEclipse eclipse” in that directory and
edit the .classpath file again (remove the line " <classpathentry kind="src"
path="../scripts'/>"). Remove possible empty "scripts" directory under grails-scriptsif you
are not able to add the linked folder.

Do aclean build for the whole workspace.

To use Eclipse GIT scm team provider: Select all projects (except "Servers') in the
navigation and right click Team Share project (not "Share projects"). Choose "Git". Then
check "Use or create repository in parent folder of project” and click "Finish".

Get the recommended code style settings from the mailing list thread (final style not decided
yet, currently profilexml). Import the code style xml fileto STSin
WindowPreferencesJavaCode StyleFormatterlmport . Grails code uses spaces instead of tabs
for indenting.

Debugging Grailsor a Grails application

To enable debugging, run:

grails run-app --debug-jvm

By default Grails forks aJVM to run the application in. The - debug- j vmargument causes the
debugger to be associated with the forked JVM. In order to instead attach the debugger to
the build system which is going to fork the VM use the - debug Option:

grails -debug run-app

22.3 Submit Patchesto GrailsCore

http://grails.1312388.n4.nabble.com/Grails-development-code-style-IDE-formatting-settings-tp3854216p3854216.html
http://grails.1312388.n4.nabble.com/attachment/3854262/0/profile.xml

If you want to submit patches to the project, you ssmply need to fork the repository on
GitHub rather than clone it directly. Then you will commit your changes to your fork and
send a pull request for a core team member to review.

Forking and Pull Requests

One of the benefits of GitHub is the way that you can easily contribute to a project by
forking the repository and sending pull requests with your changes.

What follows are some guidelines to help ensure that your pull requests are speedily dealt
with and provide the information we need. They will also make your life easier!

Make sureyour fork isup to date

Making changes to outdated sourcesis not a good idea. Someone else may have already
made the change.

git pull upstream naster
Create alocal branch for your changes

Your lifewill be greatly simplified if you create alocal branch to make your changes on.
For example, as soon as you fork arepository and clone the fork locally, execute

git checkout -b issue_123

Thiswill create anew local branch called "issue 123" based off the "master" branch. Of
course, you can name the branch whatever you like, but a good idea would be to reference
the GitHub issue number that the change is relevant to. Each Pull Request should have its
own branch.

Create Github issuesfor non-trivial changes

For any non-trivial changes, raise an issue on github if one doesn’t already exist. That helps
us keep track of what changes go into each new version of Grails.

Include github issue I D in commit messages

This may not seem particularly important, but having a github issue ID in a commit message
means that we can find out at alater date why a change was made. Include the ID in any and
all commitsthat relate to that issue. If acommit isn’t related to an issue, then there's no need
to include anissue ID.

Make sureyour fork isup to date again and rebase

Since the core developers must merge your commits into the main repository, it makeslife
much easier if your fork on GitHub is up to date before you send a pull request.

Let’s say you have the main repository set up as aremote called "upstream” and you want to
submit a pull request. Also, all your changes are currently on the local "issue 123" branch
but not on "master”. The first step involves pulling any changes from the main repository
that have been added since you last fetched and merged:

http://github.com
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request/

git checkout master
git pull upstream naster

This should compl ete without any problems or conflicts. Next, rebase your local branch
against the now up-to-date master:

git checkout issue_123
git rebase master

What this does is rearrange the commits such that all of your changes come after the most
recent one in master. Think adding some cards to the top of a deck rather than shuffling
them into the pack.

Push your branch to GitHub and send Pull Request

Finally, you must push your changesto your fork on GitHub, otherwise the core developers
won't be able to pick them up:

git push origin issue_123

Y ou should not merge your branch to your forks master. If the Pull Request is not
accepted, your master will then be out of sync with upstream forever.

Y ou're now ready to send the pull request from the GitHub user interface.
Say what your pull request isfor

A pull request can contain any number of commits and it may be related to any number of
issues. In the pull request message, please specify the IDs of all issues that the request
relatesto. Also give abrief description of the work you have done, such as. "I refactored the
data binder and added support for custom number editors. Fixes #xxxx".

22.4 Submit Patchesto Grails Documentation

Contributing Simple Changes

The user guide is written using Asciidoctor. The simplest way to contribute fixesisto
simply click on the "Improve this doc" link that is to the right of each section of the
documentation.

Thiswill link to the Github edit screen where you can make changes, preview them and
create a pull request.

Building the Guide

If you want to make significant changes, such as changing the structure of the table of
contents etc. then we recommend you build the user guide. To do that simply checkout the
sources from github:

$ git clone https://github.confgrails/grails-doc/
$ cd grails-doc

The source files can be found in the src/ en/ gui de directory. Whilst the Table of Contents
(TOC) isdefined in the src/ens gui dertoc. ym file.

http://asciidoctor.org/docs/user-manual/

Each YAML key pointsto a Asciidoc template. For example consider the following YAML.:

introduction:
title: Introduction
what sNew:
title: What's newin Gails 3.2?

Theintroduction K€y poOiNtStO src/ens gui de/i ntroducti on. adoc. Thetitie key definesthetitle
that isdislayed in the TOC. Because what snew Key is nested underneath the i ntroducti on key it
POINtStO src/ en/ gui de/ i nt roduct i on/ what sNew. adoc, Which is nested in a directory called

introduction.

Essentially, using thetoc. yni file and the directory structure you can manipulate the structure
of the user guide.

To generate the documentation run the publ i shaui de task:

$./gradl ew publishGuide -x api Docs
In the above example we skip the api ocs task to speed up building of the guide, otherwise
all Groovydoc documentation will be built too!

Once the guide is built ssmply open the bui 1 d/ docs/i ndex. htmi file in a browser to review your
changes.

Copies of this document may be made for your own use and for distribution to others, provided that you do
not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

